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Abstract

The aim of thesis is to prove new results on the geometry and spectrum of typical
compact hyperbolic surfaces, in the high-genus limit. We focus on statements that
are true with probability going to one as the genus g → +∞ for the Weil–Petersson
probability measure, hence excluding a small set of atypical surfaces.

We first study geometric properties at the large scale log g. We prove Benjamini–
Schramm convergence and define a new notion of tangle-freeness. Several geometric
consequences are derived from this definition, amongst which an improved collar lemma
and the fact that all closed geodesics of length ≤ a log g are simple if a < 1.

Then, we prove that the spectral density of typical hyperbolic surfaces converges
to the spectral density of the hyperbolic plane in the high-genus limit. This implies a
uniform Weyl law and improved bounds on the multiplicity of eigenvalues.

Finally, we suggest a method to prove that typical hyperbolic surfaces have an
optimal spectral gap. The method relies on an asymptotic expansion of Weil–Petersson
volume polynomials in powers of 1/g and a new integration-by-parts argument.
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Résumé

L’objectif de cette thèse est de démontrer de nouveaux résultats sur la géométrie et le
spectre des surfaces hyperboliques compactes typiques, dans la limite où le genre g tend
vers l’infini. Nous prouvons des propriétés vraies avec une probabilité de Weil–Petersson
tendant vers 1 quand g → +∞, et donc sauf sur un petit ensemble de surfaces atypiques.

Nous étudions dans un premier temps des propriétés géométriques à l’échelle log g.
Nous prouvons une convergence au sens de Benjamini–Schramm et définissons une
nouvelle notion de surface � tangle-free � (non-emmêlée). Nous en déduisons plusieurs
résultats, dont un lemme du collier amélioré et le fait que, pour a < 1, toutes les
géodésiques fermées de longueur ≤ a log g sont simples.

Nous prouvons ensuite que la densité spectrale des surfaces hyperboliques typiques
converge vers la densité spectrale du plan hyperbolique quand g → +∞. Ceci implique
une loi de Weyl uniforme et une amélioration des bornes sur les multiplicités.

Enfin, nous suggérons une méthode pour démontrer que les surfaces hyperboliques
typiques ont un trou spectral optimal. Cette méthode est fondée sur un développement
asymptotique des volumes de Weil–Petersson en puissances de 1/g, et un nouvel argu-
ment utilisant des intégrations par parties.
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les rapporteurs de cette thèse, pour leur lecture attentive et leurs retours. Je remercie
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Bonnaillie-Noël qui m’ont beaucoup aidée pendant ma scolarité à l’ENS. Merci à Michèle
Audin et Claude Sabbah pour leur superbe hospitalité à mon arrivée à Strasbourg.

Enfin, je remercie mes amis et à ma famille pour leur soutien. Merci mille fois à
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Notations

N set of positive integers {1, 2, . . .}.
N0 set of non-negative integers {0, 1, 2, . . .}.

|x|, |x|∞ `1 and `∞ norms on Rn.

〈x〉 Japanese bracket
√

1 + |x|2.

X, H compact/bordered hyperbolic surface, hyperbolic plane.

InjRadX(z) injectivity radius of the surface X at the point z.

InjRadX (global) injectivity radius of the surface X.

X−(L), X+(L) L-thin and L-thick parts of the surface X.

Mg moduli space of compact hyperbolic surfaces of genus g.

VolWP
g the Weil-Petersson volume form on Mg.

Vg the total volume of Mg for VolWP
g .

PWP
g the Weil-Petersson probability measure on Mg.

EWP
g expectation w.r.t. the Weil-Petersson probability measure.

Mg,n(x) moduli space of bordered hyperbolic surfaces of signature (g, n)

with boundary components of lengths x = (x1, . . . , xn).

Tg,n(x) Teichmüller space of bordered hyperbolic surfaces [...].

Sg,n, MCGg,n fixed base surface for Tg,n(x) and its mapping class group.

Vg,n(x) total volume of Mg,n(x) for the Weil-Petersson volume.

Vg,n value of Vg,n(x) for x = (0, . . . , 0).
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Chapter 1

Introduction (in English)

The aim of this thesis is to provide information on typical compact hyperbolic surfaces.
We focus on two aspects: geometric properties, such as the lengths of closed geodesics
on the surface, and spectral properties, related to the distribution of the eigenvalues of
the Laplacian. This is achieved thanks to a new probabilistic approach, using a powerful
tool-set developed by Mirzakhani [Mir13] that allows us to sample random surfaces, and
hence remove a small set of pathological surfaces from our consideration.

We start by a description of the objects studied in this thesis and the questions we
wish to address. My contributions are then presented in Section 1.3, and highlighted
by a vertical line in the left margin, like this paragraph is.

1.1 The objects at play in this thesis

Compact hyperbolic surfaces Throughout this thesis, a compact hyperbolic surface
X is a closed (i.e. compact without boundary), connected, oriented surface equipped
with a Riemannian metric of constant curvature equal to −1. The topology of the
surface is entirely defined by its genus g ≥ 2. There exist compact hyperbolic surfaces
for every genus g ≥ 2.

(a) The Poincaré half-plane. (b) The Poincaré disk.

Figure 1.1: Two models for the hyperbolic plane and their geodesics.

13



14 CHAPTER 1. INTRODUCTION (IN ENGLISH)

Compact hyperbolic surfaces are locally isometric to the hyperbolic plane. We use
two models for the hyperbolic plane, both represented in Figure 1.1:

(a) the Poincaré half-plane model

H := {x+ iy : y > 0} with the metric ds2 =
dx2 + dy2

y2

(b) or the Poincaré disk model

{x+ iy : r2 := x2 + y2 < 1} with the metric
4( dx2 + dy2)

(1− r2)2
·

An oriented Riemannian manifold possesses a natural measure form; on the Poincaré
half-plane, it can be expressed in coordinates as dVolH = dxdy

y2 . By the Gauss-Bonnet
formula, the area of a compact hyperbolic surface X of genus g, for its standard volume
form dVolX , is equal to 2π(2g − 2).

Throughout this thesis, most of the results will be stated in the large genus limit,
i.e. as g → +∞. This limit can be interpreted in two ways: we describe (typical)
compact hyperbolic surfaces with a rich topology and large area.

The length spectrum The collection of all closed geodesics on a compact hyperbolic
surface X is countable. Indeed, each free-homotopy class (see Section 3.2.1.1) on a
compact hyperbolic surface contains exactly one closed geodesic, which is the unique
minimiser of the length in the free-homotopy class.

Figure 1.2: Two closed curves freely homotopic to one another on a genus two surface.
The shortest curve (in blue) is the geodesic representative of the free-homotopy class.

The uniqueness of the minimiser is linked to the fact that the geodesic flow on a
compact hyperbolic surface is chaotic. While there are parallel lines on the flat plane,
this is not the case on the hyperbolic plane: as one might observe on Figure 1.1, a small
perturbation of a geodesic on H is ultimately very far away from the initial geodesic.
As a consequence, situations such as cylinders of closed geodesics on the flat torus do
not occur on compact hyperbolic surfaces.

A closed geodesic is called primitive if it is not obtained by travelling along a single
closed geodesic k ≥ 2 times. The (primitive) length spectrum of the surface X is the
ordered list of the lengths of the (primitive) closed geodesics on X. Let

0 < `1 ≤ `2 ≤ . . . ≤ `i −→
i→+∞

+∞
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denote the primitive length spectrum. Any closed geodesic can be written uniquely as
an iterate of a primitive closed geodesic. As a consequence the lengths of all closed
geodesics are the k`i for k, i ≥ 1, and the primitive length spectrum determines the
length spectrum.

The first length `1 is the length of the shortest closed geodesic, called the systole.
It is equal to twice the injectivity radius InjRadX of the surface X.

Spectrum of the Laplacian For any compact hyperbolic surface X, the Laplace-
Beltrami operator ∆X is an unbounded operator on L2(X), which acts as a second-order
differential operator on smooth functions and is invariant by isometries. Throughout
this thesis, we will call this operator the Laplacian. On the Poincaré half-plane H, the
Laplacian can be expressed in coordinates as

∆H = −y2

(
∂2

∂x2
+

∂2

∂y2

)
·

An eigenvalue of the Laplacian is a real number λ such that the equation ∆Xf = λf
has a non-zero solution. Since the Laplacian appears in many important partial differ-
ential equations, such as the Laplace, heat, wave and Schrödinger equations [Eva98],
its eigenvalues can be interpreted physically, as the frequencies of a drum or quantum
energy levels for instance.

Thanks to the compactness of the surface X, by the spectral theorem, the spectrum
of the Laplacian ∆X is a discrete sequence of eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ . . . ≤ λj −→
j→+∞

+∞.

The zero eigenvalue corresponds to constant eigenfunctions and is called the trivial
eigenvalue. It is simple because we assumed that the surface is connected. The small-
est non-zero eigenvalue λ1 is called the spectral gap. It is linked to the mixing rate of
the geodesic flow [Rat87] and Brownian motion [GK19], as well as the Cheeger con-
stant [Che70, Bus82]. The spectral gap is at the center of Selberg’s famous conjecture,
which states that λ1 ≥ 1

4
for a certain class of surfaces (congruence surfaces), and has

important implications in arithmetics [Sel56].
The special part that the value 1

4
plays in the following discussion is connected

to the fact that it is the bottom of the (continuous) spectrum of the Laplacian on the
hyperbolic planeH [McK70]. Non-zero eigenvalues under 1

4
are called small eigenvalues.

1.2 Deterministic state of the art

What can be said of the distribution of the lengths (`i)i and eigenvalues (λj)j? This
question has been at the center of a very active and prolific research field throughout
the second part of the 20th century. A great understanding had been reached by the
1990’s, and Buser’s book ‘Geometry and Spectra of Compact Riemann Surfaces ’ [Bus92]
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is the primary reference of the field to this day. This very complete exposition leaves
little room for further enquiries, because many of the results that are presented are
optimal, and the remaining open questions are very ambitious or vague.

The aim of this thesis is to move past this obstacle and prove new results, that are
true for most surfaces rather than every single one of them. In order to motivate this
idea, let us overview the known results on the distribution of the families (`i)i and (λj)j,
with a particular focus on the examples that prevent us to improve them, in order to
question their typicality.

1.2.1 Small geodesics and eigenvalues

Question 1. For any ε > 0, g ≥ 2, does there exist a genus g surface such that `1 < ε?
If so, what is the maximal number I such that `1, . . . , `I < ε? Same questions for the
eigenvalues of the Laplacian.

The answer to the first question is yes: it is possible to pinch one closed geodesic
on a surface, reducing its length as much as one might want. Note that, by the Col-
lar Lemma [Bus92, Theorem 4.1.1], when doing so, the neighbourhood of the closed
geodesic becomes a long and narrow collar, as represented on Figure 1.3.

Figure 1.3: Pinched surface along one closed geodesic.

In order to pinch more curves at once, we can cut the surface into pairs of pants,
i.e. surfaces of genus 0 with 3 boundary components. A surface of genus g can be
cut into 2g − 2 pairs of pants (see Figure 1.4a). The fundamental property of pairs
of pants is that, for any prescribed lengths x1, x2, x3, their is a unique pair of pants
with boundaries of lengths x1, x2, x3. It is therefore possible to simultaneously pinch
the 3g − 3 closed curves delimiting the pairs of pants, and as a result obtain 3g − 3
arbitrarily small curves (see Figure 1.4b). Reciprocally, the number of closed geodesics
shorter than 2 arcsinh 1 is always ≤ 3g−3 [Bus92, Theorem 4.1.6], so this is a maximum.

These surfaces pinched along a pair of pants decomposition also provide an answer
to the eigenvalue part of Question 1. Indeed, they consist of 2g− 2 pieces connected by
long and narrow cylinders which act as bottle-necks and almost disconnect the surface.
Using the min-max principle, this implies that the first 2g − 2 eigenvalues go to zero
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(a) A genus 3 surface cut into 4 pairs of pants. (b) The corresponding pinched surface.

Figure 1.4: Pinching a pair of pants decomposition.

as we pinch all of the curves [Bus92, Theorem 8.1.3]. This is once again a maximum,
because the number of eigenvalues smaller than 1

4
is always at most 2g − 2 by a result

of Otal and Rosas [OR09].

Conversely, the first eigenvalue λ1 can be quite large: for instance, a compact hyper-
bolic surface of genus 2 such that λ1 ≈ 3.8 has been constructed in [Jen84]. However,
Cheng proved upper bounds on eigenvalues in [Che75], which imply that in the large-
genus limit, λ1 ≤ 1

4
+ o(1). The question of the existence of surfaces of large genus such

that λ1 ≥ 1
4

is a long-lasting conjecture [BBD88] that remains open in spite of active
research [BM01, Mon15].

1.2.2 Estimates of counting functions

For real numbers 0 ≤ a ≤ b, let us define the counting functions

N`
X(a, b) := #{i : a ≤ `i(X) ≤ b}

N∆
X(a, b) := #{j : a ≤ λj(X) ≤ b}.

Question 2. What can we say of the counting functions for a window [a, b]?

We have just discussed some optimal bounds for low windows. While it is possible
to obtain rough bounds for the length counting function (see [Bus92, Lemma 6.6.4] for
instance), it is impossible to bound N∆

X(0, b) in terms of g and b only as soon as b > 1
4
.

Indeed, for ε > 0, the number of eigenvalues between 1
4

and 1
4

+ ε goes to infinity as we
pinch one closed geodesic on a surface [Bus92, Theorem 8.1.2].

It is hard to say much more for a fixed window [a, b]. However, we can study the
asymptotics of counting functions in the large window limit, and obtain:

• the Weyl law [Bér77, Ran78]

N∆
X(0, b)

VolX(X)
=

b

4π
+OX

( √
b

log b

)
as b→ +∞ (1.1)
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• the prime geodesic theorem (with error terms) [Hub59]

N`
X(0, log b)

VolX(X)
= li(b) +

∑
j:λj=sj(1−sj)
with sj∈( 3

4
,1)

li(bsj) +OX

(
b

3
4

log b

)
as b→ +∞ (1.2)

where li(b) =
∫ b

2
dt

log t
∼+∞

b
log b

is the integral logarithm.

The implied constants in both statements depend on the surface.

Question 3. Can the Weyl law and prime geodesic theorem be made uniform in terms
of the surface?

The error term in the prime geodesic theorem depends on the small eigenvalues
λ ∈ (0, 3

16
). The reason behind this appearance of eigenvalues is that the two spectra

(`i)i and (λj)j are intertwined in the Selberg trace formula [Sel56], one of the main
tools used to study the geometry and spectrum of compact hyperbolic surfaces. This
powerful formula establishes a correspondence between the two following sets:

{λj, j ≥ 0} ↔ {k`i, k, i ≥ 1}.

These links are not one-to-one but rather intricate. Notably, the Selberg trace formula
involves a Fourier transform, which creates interactions between:

• small eigenvalues and long geodesics, as in equation (1.2)

• short geodesics and large eigenvalues, as we will have several opportunities to
notice throughout this thesis (see Sections 5.1 and 5.3.1.3 and Chapter 6).

As a consequence, we expect pinched surfaces from Figure 1.4b to behave differently
from non-pinched surfaces, since they have many small geodesics and eigenvalues. This
is a strong limitation to any uniform estimate.

1.2.3 Multiplicities

The multiplicity of a length ` or an eigenvalue λ is defined as

m∆
X(λ) = #{j : λj = λ}

m`
X(`) = #{i : `i = `}.

Question 4. Can we bound the multiplicities m∆
X and m`

X of a surface?

By [Bes80], the multiplicity of the j-th eigenvalue λj is smaller or equal to 4g+2j−1.
We do not know if this bound is optimal; surfaces of genus g such that the multiplicity
of λ1 is b1+

√
8g+1
2
c are constructed in [CC88]. These examples are obtained, once again,

by pinching a family of curves on the surface.
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The prime geodesic theorem provides a rough bound on the multiplicity of a length `,
behaving exponentially in `. Examples of surface with exponential multiplicities are
known: often, they come from families of surfaces with symmetries, arithmetic sur-
faces, such as the regular octagon represented in Figure 1.5 [Mar06]. Some numerical
simulations seem to suggest that there also exist non-arithmetic surfaces with exponen-
tial multiplicities [BGGS97, Section 10].

Figure 1.5: A compact arithmetic surface obtained by gluing a regular octagon.

It could be seen as a surprise that there would be so many multiplicities. What are
the odds for two eigenvalues λj and λj′ , or two lengths `i and `i′ , to be precisely equal?

Randol proved in [Ran80] using a result of Horowitz [Hor72] that the length spec-
trum always has unbounded multiplicities, i.e. for any compact hyperbolic surface X
and any N , there is a ` such that m`

X(`) ≥ N . This is proved using ‘rigid’ families of
geodesics in pairs of pants, which always have the same lengths.

The situation for the simple length spectrum is different. One can easily construct
families of 3g−3 simple geodesics with identical lengths using a pair of pants decompo-
sition. But McShane and Parlier proved in [MP08] that the set of surfaces that contain
two simple geodesics of equal length is meagre in the set of surface: it is a countable
union of analytic sub-manifolds of real co-dimension 1. In other words, multiplicities
in the simple length spectrum are exceptional and do not occur for typical surfaces.

1.3 Typical surfaces: literature and contributions

All of the examples exhibited in the previous section are somehow peculiar: they are
either obtained by pinching curves, and in a sense ‘limit-cases’, or discrete families of
surfaces that have particular symmetries or algebraic properties. One of the main aims
of this thesis is to improve our knowledge of compact hyperbolic surfaces by setting
aside a small set of ‘pathological’ surfaces, and focusing on typical surfaces only.

This idea can be quite challenging to implement, because it requires to decide on a
definition of typicality, which is both meaningful and convenient to use.
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1.3.1 Different notions of typical surfaces

There is no canonical way to study typical surfaces, and many different approaches have
been used successfully to do so; a few examples of models are presented in Table 1.1
together with the reference in which they are introduced.

Probabilistic Random Bely̆ı surfaces [BM04]

Weil–Petersson probability measure [GPY11, Mir13]

Combinatorial pair of pants gluings [BCP19]

Random covers [MNP20]

Topological ‘Small’ complement (meagre...) [Wol77] or [MP08]

or geometric ‘Large’ set (unbounded...) [Mon15]

Table 1.1: Overview of different notions of typicality that can be found in literature.

The bulk of this thesis focuses on the Weil–Petersson model. The starting point is
very natural: for an integer g ≥ 2, we equip the moduli space

Mg = {compact hyperbolic surfaces of genus g}�isometry

with a probability measure. We will then say a property is typical if occurs with high
probability, that is to say if

Prob(X ∈Mg satisfies the property) −→
g→+∞

1.

A priori, there exist many probability measures on the moduli space Mg. For-
tunately, one excellent candidate stands out as a canonical choice: the probability
measure PWP

g induced by the Weil–Petersson symplectic structure [Wei58]. One strong
advantage of this measure is that it has an elementary expression in a set of local coor-
dinates of the moduli space Mg called Fenchel–Nielsen coordinates [Wol81]. Building
on this formula, Mirzakhani developed in [Mir07a, Mir13] a powerful tool-set allowing
to compute and estimate certain probabilities, hence laying the ground work for a now
very active field.

1.3.2 New formulation of our questions

Let us reformulate the previous questions in our new probabilistic setting.

Question 1? How large are `1 and λ1 typically? How many small geodesics and small
eigenvalues does a typical surface have?

Question 2? What are the statistics of the counting functions in the limit g → +∞?
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Question 3? Can the Weyl law and prime geodesic theorem be made uniform if we
restrict ourselves to typical surfaces?

Question 4? Can multiplicity bounds be improved for typical surfaces?

The recent apparition of several new models and tools contributed to the increase
of popularity of this idea in the last few years. We will try and capture this fast-moving
picture.

Because the Weil–Petersson model has strong links with the geometry of the random
surfaces, it is generally more direct to obtain information on the geometry of typical
surfaces, and spectral information comes as a consequence. For this reason, we organise
our exposition in this order. We will keep track of the different questions that we address
by indicating their number in the titles of the different paragraphs.

1.3.3 Geometric results

First results (1?) Mirzakhani presented in [Mir13] a methodology and tools that
allow us to study the geometry of random surfaces, as well as the first bounds for many
important geometric quantities.

• The length of the systole cannot be bounded away from zero typically:

∀ε > 0, PWP
g (`1 ≥ ε) 9

g→+∞
1.

• The Cheeger constant

h(X) = inf

{
`(∂A)

VolX(A)
where X = A tB and VolX(A) ≤ VolX(B)

}
,

that measures how hard it is to disconnect the surface, is always smaller than
1 + o(1) in the large-genus limit [Che75]. Typically, h(X) ≥ log 2

2π+log 2
≈ 0.099.

• The diameter of a typical surface is smaller than 40 log g. This bound is sharp up
to multiplication by a constant, because the diameter of any compact hyperbolic
surface of genus g is always ≥ log(4g − 2).

Besides the fact that the length of the systole cannot be bounded below, all of the
results proven in [Mir13] seem to indicate that typical surfaces of large genus are very
‘well-connected’ or ‘tightly packed’ – this contrasts with examples such as Figure 1.6.

Figure 1.6: An atypical surface of large genus: its Cheeger constant goes to zero as
g → +∞ and its diameter grows linearly as a function of g.

Similar qualitative results have been obtained in the random Bely̆ı setting by Brooks
and Makover, the only known difference so far being the existence of a lower bound for
the length of the systole `1 [BM04, Theorem 0.2].
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Statistic of counting functions for fixed windows (2?) Mirzakhani and Petri
proved in [MP19] that for any fixed window [a, b], the counting function N`

X(a, b) con-
verges to a Poisson law of parameter

λ(a, b) =

∫ b

a

et + e−t − 2

2t
dt

as the genus g approaches infinity. We know that Poisson laws are used to model rare
events. Therefore, the presence of small geodesics can be seen as a somehow ‘rare’ yet
not atypical event.

They furthermore proved the independence of counting functions on disjoint win-
dows, and computed the asymptotic law of the systole `1.

Distribution of ‘short’ geodesics on the surface (1?) Chapter 4 is dedicated
to pushing the description of ‘short’ geodesics on typical surfaces further: rather than
looking at fixed windows as in [MP19], we study geodesics of length proportional to
log g.

Note that log g is a long distance on a typical surface, comparable with its diameter.
Working in this length scale is motivated by the fact that, the same way eigenvalues
λ < 3

16
appear in the prime geodesic theorem [Hub59], we expect for geodesics of

logarithmic size to intervene when proving spectral asymptotics.

We prove that, although closed geodesics of length proportional to log g typically
do exist, they are rare and can be described quite precisely. This is achieved by adopt-
ing two complementary viewpoints, Benjamini–Schramm convergence (Section 4.1) and
tangle-freeness (Section 4.2). Both notions have significant consequences on the spec-
trum of typical surfaces, which are presented in Chapters 5 and 6.

For a real number L > 0, the L-thin part of a surface X is defined as

X−(L) = {z ∈ X : InjRadX(z) < L}

where InjRadX(z) is the radius of the largest embedded disk centered at z.

We prove the following result, which can be interpreted as Benjamini–Schramm
convergence of typical surfaces to the hyperbolic plane H.

Theorem (Theorem 4.1). For a < 1
3
, the area of the (a log g)-thin part of the typical

surface is negligible compared to the area of the whole surface.

The proof relies on the fact that the thin part is concentrated around small geodesics
(see Figure 1.7a) and a bound on their number. The notion of Benjamini-Schramm
convergence was adapted from graph theory [BS01] to a continuous setting in [ABB+11],
which is known to have applications to spectral theory.
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(a) A surface with too many short
geodesics and hence a significant thin part.

(b) A surface with a cluster of short
geodesics, and hence small pairs of pants.

Figure 1.7: Examples of atypical surfaces.

While Benjamini–Schramm convergence tells us that ‘short’ geodesics make up for
a small proportion of the surface, it says nothing about their distribution. Can these
geodesics be clustered together, or do they live in different parts of the surface? We
provided answers to this question in [MT21], a collaboration with Joe Thomas.

Inspired by the fact that the presence of clusters of short geodesics imply the exis-
tence of small embedded sub-surfaces, as shown in Figure 1.7b, we define a notion of
‘tangle-free surface’ as follows.

Definition (Definition 4). For a real number L > 0, we say that a surface is L-tangle-
free if it contains no embedded pair of pants or one-holed torus of total boundary length
smaller than 2L.

We prove that typical surfaces are ((1 − ε) log g)-tangle-free for any ε > 0, while
surfaces of large genus g are always (4 log g + O (1))-tangled. We deduce significant
geometric implications, amongst which the following.

Theorem (Theorem 4.9, Proposition 4.14 and Corollary 4.15). For L = (1 − ε) log g,
typically,

• all closed geodesics shorter than L are simple

• two closed geodesics such that `(γ1) + `(γ2) < L do not intersect

• the neighbourhood of width (L− `)/2 around a closed geodesic of length ` < L is
an embedded cylinder (much wider than the one granted by the Collar Lemma)

• the topology of a ball of radius L/8 is a ball or a cylinder.

Nie, Wu and Xue proved in [NWX20] that the length of the separating systole is
typically 2 log g, and other results at the scale log g of a similar flavour.
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Multiplicities (4?) Let ε ∈ (0, 1). Our results [MT21] together with [MP08] imply
that, typically, their are no multiplicities in the length spectrum up to the length
(1− ε) log g:

∀i 6= j such that `i, `j ≤ (1− ε) log g, `i 6= `j.

In particular, the lengths of the examples of large multiplicity found in [Hor72] are
typically > (1− ε) log g.

1.3.4 Spectral results

A highlight of this thesis are the new results published in [Mon21], one of the first
articles describing the spectrum of typical compact hyperbolic surfaces. We have proved
that the density µH represented in Figure 1.8a is typically a good approximation of the
spectrum of a surface of high genus.

Two independent teams have recently proved that there are no eigenvalues below 3
16

[WX21, LW21]. The information that we currently possess is summarized in Figure 1.8a.
These results are natural adaptations of similar results for typical regular graphs, as
suggested in Figure 1.8 – we detail these links in Section 1.4.

(a) Typical compact hyperbolic surface. (b) Typical 3-regular graph.

Figure 1.8: Illustration of what we know the histogram of the spectrum (divided by the
area or number of vertices) looks like for a typical hyperbolic surface or graph.

Let us present these results in more details, and our current understanding of some
open questions.

Number of small eigenvalues (1?) The first spectral result that appears in the
literature is the lower bound

λ1 ≥
1

4

(
log 2

2π + log 2

)2

≈ 0.002 typically

which comes as a direct consequence of Mirzakhani’s bound on Cheeger’s constant
[Mir13] together with Cheeger’s inequality [Che70].
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We prove a bound on the number of small eigenvalues in Section 5.2.

Theorem (Theorem 5.2). For a typical surface X,

∀b ≥ 0,
N∆
X(0, b)

VolX(X)
≤ 32 g−

1
27

( 1
4
−b)(log g)−

3
2 . (1.3)

The quality of this estimate depends on the position of b with respect to 1
4
.

• Taking b = 1
4
, we obtain that the number of small eigenvalues of a typical surface

is O
(
g(log g)−

3
2

)
, which is an improvement by a logarithmic correction of the

optimal bound 2g − 2 from [OR09].

• For b < 1
4
, we obtain an additional correction by a negative power of g, greater

the further away we are from the interval [1
4
,+∞).

• When b > 1
4
, the bound is still valid, but quite weak.

Neither of these results are true when we pinch a pair of pants decomposition: we
recall that in this case, for any ε > 0, there is up to 2g − 2 eigenvalues in [0, ε] and an
arbitrarily high number in [1

4
, 1

4
+ ε]. Extremely pinched surfaces are, indeed, atypical,

in the Weil–Petersson probability setting, and excluding them allows us to prove better
results.

Counting functions: upper bounds and equivalents (2?)

In [Mon21], we study the counting function N∆
X(a, b) using Benjamini–Schramm

convergence and the Selberg trace formula and prove the following results. The precise
statements of the results and their proofs can be found in Section 5.3.

Theorem (Theorems 5.8 and 5.9). For a typical surface X,

• for any 0 ≤ a ≤ b,

N∆
X(a, b)

VolX(X)
= O

(
b− a+

√
b+ 1

log g

)
. (1.4)

• for any 0 ≤ a ≤ b such that b− a�
√

b+1
log g

,

N∆
X(a, b)

VolX(X)
∼ µH(a, b) :=

1

4π

∫ +∞

1
4

tanh

(
π

√
λ− 1

4

)
1[a,b](λ) dλ (1.5)

as b and/or g approaches infinity.

All the implied constants are universal constants, independent of X, g, a and b.
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The quantity µH(a, b) is the spectral density of the hyperbolic plane, represented in
Figure 1.8a. It is supported on [1

4
,+∞).

Taking a fixed window [a, b], our results provide a first answer to Question 2?. The
next step would be to estimate correlations between the counting functions on two
disjoint windows, or improve the rates in the estimates.

Applications The results proven in [Mon21] have two significant corollaries.

• Since µH(0, b) is equivalent to b
4π

as b approaches +∞, we can deduce from equa-
tion (1.5) a uniform Weyl law

N∆
X(a, b)

VolX(X)
=

b

4π
+Og

(√
b log b

)
,

hence answering Question 3?.

• The upper bound (1.4), applied to a shrinking window around an eigenvalue,
leads to a bound on the multiplicity of any eigenvalue λ in term of λ and g. Using
equation (1.5) to estimate the typical size the λj for any j, we prove in Section 5.4
the following improvement of the deterministic bound from [Bes80] (Question 4?).

Theorem (Corollaries 5.28 and 5.29). For a typical surface X,

∀j ≥ 1, mX(λj) = O

g
√

1 + j
g

log g

 .

These estimates have also been used in [LMS20] to prove quantum ergodicity of
typical surfaces of large genus.

Spectral gap (1?) Can we improve Mirzakhani’s lower bound on λ1? Proving the
following conjecture, first stated in [Wri20], is currently one of the most awaited results
in the spectral theory of compact hyperbolic surfaces.

Conjecture. For any ε > 0,

lim
g→+∞

PWP
g

(
λ1 ≥

1

4
− ε
)

= 1.

By [Che75], the value 1
4

is the greatest number for which this statement can be
true. Mondal’s results [Mon15], in genus 2, are encouraging. He proved that the set of
genus 2 surfaces such that λ1 ≥ 1

4
is unbounded and disconnects the moduli spaceM2,

and therefore many genus 2 surfaces satisfy the conjecture. The result would imply
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the existence of surfaces of arbitrarily large genus such that λ1 ≥ 1
4
− ε, and provide a

positive answer to the Buser–Burger–Dodziuk conjecture [BBD88].

The introduction of the notion of tangle-free surfaces in [MT21] was motivated by
research on this conjecture in collaboration with Nalini Anantharaman. We present a
few elements related to this conjecture in Chapter 6.

A weaker version of the conjecture has been obtained very recently by two indepen-
dent teams [LW21, WX21], with 3

16
in place of 1

4
. The same bound has been established

in the random cover model [MNP20]. Though there are some key differences in the
method we suggest and the ones they have used, some of which we will present in
Chapter 6, many elements are similar. Notably, some definitions and results from
[MT21] have been used independently in [LW21].

The value 3
16

appears because computations in both articles are done at a precision
1/g. In order to obtain the result for 1

4
, we know that we need to be able to do

computations with arbitrarily high precision, i.e., errors of size 1/gN for N � 1.

In order to make this possible, we have:

• computed a high-genus asymptotic expansion of the Weil–Petersson volume poly-
nomials, that appear when computing probabilities in the Weil–Petersson setting
(Theorems 3.18 and 3.19);

• generalised the tangle-free hypothesis to a weaker notion, adding a parameter so
that the probability of not being tangle-free can be O

(
g−N

)
for an arbitrarily

large N (Theorems 4.19 and 4.20).

1.4 Comparison with regular graphs

To conclude this introduction, let us quickly outline the correspondence between regular
graphs and compact hyperbolic surfaces, which is the inspiration for many of the results
presented in this thesis.

Let d ≥ 3 be an integer. In the following, a d-regular graph is a graph such that
every vertex has d neighbours. Let n denote the number of vertices of such a graph.

Regular graphs bear surprising resemblances to compact hyperbolic surfaces on
many levels, both geometrically and spectrally. Here are two facts that contribute
to these similarities:

• the neighbourhood of any point in the object is identical (a small hyperbolic disk
or exactly d vertices)

• the size (area or number of vertices) of a ball grows exponentially with its radius.
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compact hyp surface d-regular graph

asymptotic regime: genus g → +∞ number of vertices n→ +∞
probabilistic model: Weil–Petersson law PWP

g uniform law P(d)
n

spectrum included in: [0,+∞) [−d, d]

‘trivial’ eigenvalues: 0 d, and maybe −d (⇔ bipartite)

universal cover: hyperbolic plane H infinite d-regular tree

and its spectrum: [1
4
,+∞) [−2

√
d− 1, 2

√
d− 1]

typical limit of spectral density of H Kesten–McKay law

the spectral density: [Mon21] [Kes59, McK81]

spectral gap: λ1 d− λ+

where λ+ := max{|λi| : |λi| < d}
deterministic bound: λ1 ≤ 1

4
+ o(1) [Che75] λ+ ≥ 2

√
d− 1− o(1) [Nil91]

probabilistic bound: λ1 ≥ 3
16
− ε [WX21, LW21] λ+ ≤ 2

√
d− 1 + o(1) [Fri03]

Table 1.2: Comparison between the properties of the eigenvalues (λj)j≥0 of the Lapla-
cian ∆ on a compact hyperbolic surface and the eigenvalues λ1 ≥ . . . ≥ λn of the
adjacency matrix A = dIn −∆ of a d-regular graph.

All of the definitions and results presented in this thesis have counterparts in the
world of regular-graphs, as summarized in Table 1.2. Results are often (if not always)
proven significantly before for graphs, because they are simpler to study (due to their
finiteness), but also because they are very fundamental objects which appear in count-
less parts of mathematics and science.

1.5 Organisation of this thesis

The organisation of the different chapters of this thesis and the way they depend on one
another is summarized in Figure 1.9. We have high-lighted the new results by putting
them in solid-line boxes.

Here is a short outline of the different chapters.

• In Chapter 3, we provide an introduction to the Weil–Petersson probabilistic
setting. The presentation is somewhat informal, but precise references and moti-
vations for the important ideas and tools of this field are given. The last section
of this chapter contains new estimates announced in [AM20].

• Chapters 4 and 5 constitute the bulk of this thesis. Most of the new results
have been extracted from [Mon21, MT21] and are significantly rearranged: the



1.5. ORGANISATION OF THIS THESIS 29

geometric results can be found in Chapter 4 and the results on spectral density
in Chapter 5.

• Chapter 6 presents advances towards proving that typical surfaces have an optimal
spectral gap.

• In Chapter A, we generalise some of the main results of this thesis to include
another probabilistic model, the model of random Bely̆ı surfaces introduced by
Brooks and Makover [BM04].

Detailed presentation of the model

Sections 3.1 and 3.2

New asymptotic expansion

Section 3.3, [AM20]

Benjamini–Schramm
convergence

Section 4.1, [Mon21]

The tangle-free
hypothesis

Section 4.2, [MT21]

Generalisation of the
tangle-free hypothesis

Section 4.3

Estimates of the spectral density

Sections 5.2 and 5.3, [Mon21]

Multiplicities

Section 5.4, [Mon21]

Spectral gap

Chapter 6

Chapter 3: Probabilistic setting

Chapter 4: Geometry

Chapters 5 and 6: Spectrum

Figure 1.9: Organisation of the chapters of this thesis.
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Chapitre 2

Introduction (en français)

L’objectif de cette thèse est d’améliorer notre connaissance des surfaces hyperboliques
compactes typiques. Nous nous concentrons sur deux types de propriétés en particulier :
les propriétés géométriques, liées (par exemple) aux longueurs des géodésiques fermées,
et spectrales, concernant la répartition des valeurs propres du laplacien. Notre approche
est basée sur de nouvelles méthodes probabilistes développées par Mirzakhani [Mir13],
qui nous permettent de considérer des surfaces aléatoires, et ainsi de retirer un petit
ensemble de surfaces pathologiques de notre étude.

Nous commençons par introduire les objets et enjeux de cette thèse. Mes contri-
butions sont ensuite présentées dans la section 2.3 et mises en valeur par une ligne
verticale dans la marge, à gauche, comme ce paragraphe.

2.1 Les objets étudiés dans cette thèse

Les surfaces hyperboliques compactes Tout au long de cette thèse, une surface
hyperbolique compacte X est une surface compacte, sans bord, connexe, orientée, équipée
d’une métrique riemannienne de courbure constante égale à −1. La topologie de la
surface est entièrement décrite par son genre g ≥ 2. Il existe des surfaces hyperboliques
compactes de tout genre g ≥ 2.

Les surfaces hyperboliques compactes sont localement isométriques au plan hyper-
bolique. Nous utilisons deux modèles pour le plan hyperbolique, représentées dans la
figure 2.1 :

(a) le modèle du demi-plan de Poincaré

H := {x+ iy : y > 0} muni de la métrique ds2 =
dx2 + dy2

y2

(b) ou le modèle du disque de Poincaré

{x+ iy : r2 := x2 + y2 < 1} muni de la métrique
4( dx2 + dy2)

(1− r2)2
·

31
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(a) Le demi-plan de Poincaré. (b) Le disque de Poincaré.

Figure 2.1 : Deux modèles pour le plan hyperbolique, et leurs géodésiques.

Toute variété riemannienne orientée admet une forme volume naturelle. Sur le demi-
plan de Poincaré, son expression en coordonnées est dVolH = dxdy

y2 . Par la formule de
Gauss–Bonnet, l’aire d’une surface hyperbolique compacte X de genre g pour sa forme
volume standard dVolX est égale à 2π(2g − 2).

Dans cette thèse, la plupart des résultats démontrés le sont dans la limite de grand
genre, c’est-à-dire quand g → +∞. Nous décrivons donc des surfaces hyperboliques
compactes (typiques) qui ont une topologie riche et une grande aire.

Le spectre des longueurs L’ensemble des géodésiques fermées sur une surface hy-
perbolique compacte X est dénombrable. En effet, chaque classe d’homotopie libre (voir
section 3.2.1.1) sur X contient exactement une géodésique fermée. Il s’agit de l’unique
minimum de la fonction longueur sur la classe d’homotopie libre.

Figure 2.2 : Deux courbes fermées librement homotopes sur une surface de genre 2. La
courbe la plus courte (en bleu) est le représentant géodésique de cette classe d’homotopie
libre.

L’unicité du minimum est liée au caractère chaotique du flot géodésique sur les sur-
faces hyperboliques compactes. Comme on peut l’observer sur la figure 2.1, la géodésique
obtenue après une petite perturbation d’une géodésique γ sur H est à une distance non
bornée de γ en temps longs. Par conséquent, il ne peut pas y avoir de cylindres de
géodésiques fermées sur les surfaces hyperboliques compactes, contrairement à ce qui
est observé sur le tore plat.

Une géodésique fermée est dite primitive si elle ne peut être obtenue en parcourant
une géodésique fermée k ≥ 2 fois. Le spectre des longueurs (primitives) de la surface X
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est la liste ordonnée des longueurs des géodésiques fermées (primitives) sur X. Notons

0 < `1 ≤ `2 ≤ . . . ≤ `i −→
i→+∞

+∞

le spectre des longueurs primitives. Toute géodésique fermée peut être obtenue de
manière unique comme itérée d’une géodésique fermée primitive. Par conséquent, les
longueurs des géodésiques fermées sont exactement les k`i pour k, i ≥ 1, et le spectre
des longueurs primitives détermine le spectre des longueurs.

La première longueur `1 est la longueur de la géodésique fermée la plus courte,
appelée systole. Elle vaut le double du rayon d’injectivité InjRadX de la surface X.

Spectre du laplacien Pour une surface hyperbolique compacte X, l’opérateur de
Laplace–Beltrami ∆X est un opérateur non borné sur L2(X), qui agit comme un
opérateur différentiel d’ordre deux sur les fonctions lisses, et est invariant par isométrie.
Dans cette thèse, nous appellerons cet opérateur le laplacien. Sur le demi-plan de Poin-
caré H, l’expression du laplacien en coordonnées est

∆H = −y2

(
∂2

∂x2
+

∂2

∂y2

)
·

Nous appelons valeur propre du laplacien tout nombre réel λ tel que ∆Xf = λf
admette une solution non nulle. L’apparition du laplacien dans de nombreuses équations
aux dérivées partielles importantes, comme l’équation de Laplace, de la chaleur, des
ondes et de Schrödinger [Eva98], donne diverses interprétations physiques à ses valeurs
propres. Elles peuvent notamment être vues comme les fréquences d’un tambour ou des
niveaux d’énergie quantique.

Par le théorème spectral pour les surfaces compactes, le spectre du laplacien ∆X est
une famille discrète de valeurs propres

0 = λ0 < λ1 ≤ λ2 ≤ . . . ≤ λj −→
j→+∞

+∞.

La valeur propre nulle correspond aux fonctions propres constantes et est appelée la
valeur propre triviale. Elle est simple car nous avons supposé que la surface est connexe.
La plus petite valeur propre non nulle λ1 est appelée le trou spectral. Cette quantité
est liée au temps de mélange du flot géodésique [Rat87] et du mouvement brownien
[GK19], ainsi qu’à la constante de Cheeger [Che70, Bus82]. Elle est au cœur de la célèbre
conjecture de Selberg, qui affirme que λ1 ≥ 1

4
pour une certaine classe de surfaces (les

surfaces de congruence), et a des conséquences importantes en arithmétique [Sel56].

L’apparition du nombre 1
4

dans cette discussion est liée au fait qu’il s’agit du bas du
spectre (continu) du laplacien sur le plan hyperbolique H [McK70]. Les valeurs propres
non nulles strictement inférieures à 1

4
sont appelées petites valeurs propres.
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2.2 État de l’art déterministe

Quelles informations sur la répartition des longueurs (`i)i et valeurs propres (λj)j est-il
possible d’obtenir ? Cette question fut au cœur d’un champ de recherche très actif et
prolifique tout au cours de la seconde partie du 20ème siècle. Un très bon niveau de
compréhension a été atteint dans les années 90, et le livre de Buser ‘Geometry and
Spectra of Compact Riemann Surfaces ’ [Bus92] est encore à ce jour la référence du
domaine. Cette exposition très complète n’invite que peu à continuer l’exploration de
ces objets, car beaucoup des résultats présentés sont optimaux, et les questions qui
restent ouvertes sont très ambitieuses ou vagues.

L’objectif de cette thèse est de dépasser cette difficulté et démontrer de nouveaux
résultats, qui sont vrais pour la plupart des surfaces, plutôt que toutes. Afin de mo-
tiver cette idée, nous commençons par exposer les résultats classiques concernant la
répartition des familles (`i)i et (λj)j. Nous insisterons sur les exemples qui prouvent
leur optimalité, afin de pouvoir remettre en question leur caractère typique plus tard.

2.2.1 Petites géodésiques et valeurs propres

Question 1. Pour un ε > 0, g ≥ 2, existe-t-il une surface de genre g telle que `1 < ε ?
Si oui, quel est de plus grand indice I tel que l’on puisse avoir `1, . . . , `I < ε ? Mêmes
questions pour les valeurs propres du laplacien.

La réponse à la première question est oui : il est possible de pincer une géodésique
fermée sur une surface, et ainsi de réduire sa longueur à souhait. Le lemme du collier
[Bus92, Théorème 4.1.1] implique que, ce faisant, le voisinage de la géodésique fermée
devient un cylindre long et fin, comme celui représenté sur la figure 2.3.

Figure 2.3 : Surface pincée le long d’une géodésique fermée.

Afin de pincer plus de courbes simultanément, il est possible de couper la sur-
face en pantalons, c’est-à-dire en surfaces de genre 0 avec 3 composantes de bord.
Une surface de genre g peut être décomposée en 2g − 2 pantalons, comme indiqué sur
la figure 2.4a. Les pantalons vérifient une propriété fondamentale : pour toutes lon-
gueurs fixées x1, x2, x3, il existe un unique pantalon hyperbolique de bords de longueurs
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x1, x2, x3. Il est par conséquent possible de pincer les 3g − 3 géodésiques délimitant les
pantalons en même temps, et ainsi d’obtenir 3g − 3 géodésiques de longueurs arbitrai-
rement petites (voir Figure 2.4b). Réciproquement, le nombre de géodésiques fermées
plus courtes que 2 arcsinh 1 est toujours ≤ 3g − 3 [Bus92, Théorème 4.1.6] ; ce nombre
est donc un maximum.

(a) Une surface de genre 3 coupée en 4 pantalons. (b) La surface pincée associée.

Figure 2.4 : Pincer une décomposition en pantalons.

Ces surfaces pincées le long d’une décomposition en pantalons répondent également
à la question 1 du point de vue des valeurs propres. En effet, elles sont composées
de 2g − 2 morceaux liés par des cylindres longs et fins, qui jouent le rôle de goulots
d’étranglement. En utilisant le principe du min-max, il est possible de montrer que cela
implique que les 2g − 2 premières valeurs propres tendent vers zéro lorsque l’on pince
toutes ces géodésiques [Bus92, Théorème 8.1.3]. Il s’agit, ici aussi, d’un maximum : Otal
et Rosas ont montré dans [OR09] que le nombre de valeurs propres plus petites que 1

4

est toujours majoré par 2g − 2.
Inversement, la première valeur propre λ1 peut être relativement grande : par

exemple, [Jen84] construit une surface hyperbolique compacte de genre 2 telle que
λ1 ≈ 3.8. Néanmoins, Cheng a établi des bornes supérieures sur les valeurs propres, qui
impliquent que, dans la limite de grand genre, λ1 ≤ 1

4
+ o(1) [Che75]. La question de

l’existence de surfaces de grand genre telles que λ1 ≥ 1
4

est ancienne [BBD88], et reste
ouverte en dépit de l’intérêt qu’elle suscite [BM01, Mon15].

2.2.2 Estimées des fonctions de comptage

Pour tous nombres réels 0 ≤ a ≤ b, définissons les fonctions de comptage

N`
X(a, b) := #{i : a ≤ `i(X) ≤ b}

N∆
X(a, b) := #{j : a ≤ λj(X) ≤ b}.

Question 2. Que peut-on dire des fonctions de comptage pour une fenêtre [a, b] ?

Nous avons présenté jusqu’à présent des bornes optimales pour des petites valeurs
de a et b. Alors qu’il est toujours possible d’obtenir des bornes pour la fonction de
comptage des longueurs (voir [Bus92, Lemme 6.6.4] par exemple), il n’est pas possible
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de borner N∆
X(0, b) en fonction de g et b dès que b > 1

4
. En effet, pour tout ε > 0,

le nombre de valeur propres entre 1
4

et 1
4

+ ε tend vers l’infini lorsque l’on pince une
géodésique fermée sur une surface [Bus92, Théorème 8.1.2].

Il est difficile de dire plus pour une fenêtre fixée [a, b]. Cependant, il est intéressant
d’étudier le comportement asymptotique des fonctions de comptage quand la fenêtre
devient grande :

• par la loi de Weyl [Bér77, Ran78],

N∆
X(0, b)

VolX(X)
=

b

4π
+OX

( √
b

log b

)
quand b→ +∞ (2.1)

• par le théorème des géodésique primitives (avec termes d’erreur) [Hub59],

N`
X(0, log b)

VolX(X)
= li(b)+

∑
j:λj=sj(1−sj)
with sj∈( 3

4
,1)

li(bsj)+OX

(
b

3
4

log b

)
quand b→ +∞ (2.2)

où li(b) =
∫ b

2
dt

log t
∼+∞

b
log b

est le logarithme intégral.

Les constantes implicites dans ces deux résultats dépendent de la surface.

Question 3. Est-il possible de démontrer une version de la loi de Weyl ou du théorème
des géodésique primitives uniforme en terme de la surface ?

Le terme d’erreur dans le théorème des géodésiques primitives dépend des petites
valeurs propres λ ∈ (0, 3

16
). Le fait que les petites valeurs propres interviennent dans

cette formule provient de la formule des traces de Selberg [Sel56], qui décrit les interac-
tions entre les deux spectres (`i)i et (λj)j. Cette formule est un des principaux outils
utilisés pour étudier la géométrie et le spectre des surfaces hyperboliques compactes, et
établit une correspondance entre les deux ensembles suivants :

{λj, j ≥ 0} ↔ {k`i, k, i ≥ 1}.

Il ne s’agit pas d’une relation directe entre ces deux quantités, mais plutôt d’interactions
complexes. Notamment, la formule des traces de Selberg fait intervenir une transformée
de Fourier, qui crée des interactions entre :

• les petites valeur propres et longues géodésiques, comme dans l’équation (2.2)

• les géodésiques courtes et grandes valeur propres, comme nous pourrons l’observer
à plusieurs occasions au cours de cette thèse (voir sections 5.1, 5.3.1.3 et 6).

Par conséquent, les surfaces pincées de la figure 2.4b ont probablement un compor-
tement particulier, car elles possèdent de nombreuses petites géodésiques et valeur
propres. Ceci est un obstacle significatif à l’établissement de bornes uniformes.
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2.2.3 Multiplicités

La multiplicité d’une longueur ` ou d’une valeur propre λ est définie comme étant

m∆
X(λ) = #{j : λj = λ}

m`
X(`) = #{i : `i = `}.

Question 4. Est-il possible de borner les multiplicités m∆
X et m`

X ?

D’après [Bes80], la multiplicité de la j-ème valeur propre λj est inférieure ou égale à
4g+2j−1. Nous ne savons pas si cette borne est optimale ; des surfaces de genre g telles
que la multiplicité de λ1 est b1+

√
8g+1
2
c ont été construites dans [CC88]. Ces exemples

sont obtenus, encore une fois, en pinçant une famille de géodésiques sur une surface.
Le théorème des géodésique primitives implique une borne sur la multiplicité d’une

longueur `, de taille exponentielle en `. Des exemples de surfaces avec des multiplicités
exponentielles sont connus : souvent, ils proviennent de familles de surfaces avec des
symétries, les surfaces arithmétiques, comme l’octogone régulier représenté en Figure
2.5 [Mar06]. Des simulations numériques semblent indiquer qu’il existe également des
surfaces non arithmétiques avec des multiplicités exponentielles [BGGS97, Section 10].

Figure 2.5 : Surface arithmétique compacte obtenue en collant un octogone régulier.

L’existence de si grandes multiplicités pourrait être considérée comme surprenante.
Est-il réellement fréquent que deux valeurs propres λj et λj′ , ou deux longueurs `i et
`i′ , soient précisément égales ?

Randol a démontré dans [Ran80], à l’aide d’un résultat de Horowitz [Hor72], que le
spectre des longueurs admet toujours des multiplicités de degré arbitrairement grand.
Plus précisément, pour toute surface hyperbolique compacte X et tout N , il existe
un nombre ` tel que m`

X(`) ≥ N . Cet énoncé est prouvé en utilisant des familles de
géodésiques � rigides � dans des pantalons, qui ont toujours des longueurs identiques.

La situation pour le spectre des longueurs simples est différente. Il est facile de
construire des familles de 3g − 3 géodésiques simples de longueurs identiques, à l’aide
d’une décomposition en pantalons. Mais McShane et Parlier ont prouvé dans [MP08]
que l’ensemble des surfaces qui contiennent deux géodésiques simples de même longueur
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est maigre dans l’ensemble des surfaces : il s’agit d’une union dénombrable de sous-
variétés analytiques de codimension réelle 1. En d’autres termes, les multiplicités dans
le spectre des longueurs simples sont exceptionnelles et ne se produisent pas pour des
surfaces typiques.

2.3 Surfaces typiques : littérature et contributions

Tous les exemples présentés dans la section précédente sont, d’une certaine manière,
particuliers. Ils sont obtenus soit en pinçant des géodésiques (et sont donc des � cas
limites �), ou bien comme des familles discrètes de surfaces avec des symétries ou
propriétés algébriques. Un des objectifs centraux de cette thèse est d’améliorer notre
connaissance des surfaces hyperboliques compactes, en mettant de côté un petit en-
semble de surfaces � pathologiques �, et en se concentrant ainsi uniquement sur les
surfaces typiques.

La réalisation de cette idée peut être délicate, car elle nécessite de choisir une notion
de typicalité, qui soit à la fois pertinente et pratique d’utilisation.

2.3.1 Différentes notions de surfaces typiques

Il n’y a pas de manière d’étudier les surfaces typiques qui soit canonique, et plusieurs
approches différentes ont déjà été utilisées avec succès ; quelques exemples de modèles
sont présentés dans la Table 2.1, avec les références dans lesquelles elles sont introduites.

Probabiliste Surfaces de Bely̆ı aléatoires [BM04]

Mesure de probabilité de Weil–Petersson [GPY11, Mir13]

Collages combinatoires de pantalons [BCP19]

Revêtements aléatoires [MNP20]

Topologique � Petit � complément (maigre...) [Wol77] ou [MP08]

ou géométrique � Grand � ensemble (non borné...) [Mon15]

Table 2.1 : Présentation de différentes notions de typicalité dans la littérature.

La majeure partie de cette thèse porte sur un modèle en particulier, le modèle de
Weil–Petersson. Son point de départ est très naturel : pour un entier g ≥ 2, nous
munissons l’espace des modules

Mg = {surfaces hyperboliques compactes de genre g}�isométrie

d’une mesure de probabilité. Une propriété sera dite typique si elle se produit avec haute
probabilité, c’est-à-dire si

Prob(X ∈Mg vérifie la propriété) −→
g→+∞

1.
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A priori, il existe de nombreuses mesures de probabilité sur l’espace des modulesMg.
Heureusement, un excellent candidat se démarque : la mesure de probabilité PWP

g induite
par la structure symplectique de Weil–Petersson [Wei58]. Un avantage significatif de
cette mesure est son expression élémentaire dans un système de coordonnées locales de
l’espace des modules Mg, appelé les coordonnées de Fenchel–Nielsen [Wol81]. À l’aide
de cette expression, Mirzakhani a développé dans [Mir07a, Mir13] des outils puissants
permettant de calculer et d’estimer certaines probabilités. Elle a ainsi mis en place les
fondations d’un sujet de recherche maintenant extrêmement actif.

2.3.2 Nouvelle formulation de nos questions

Reformulons les questions précédentes dans notre nouveau cadre probabiliste.

Question 1? Que valent `1 et λ1 typiquement ? Combien de géodésiques courtes et de
petites valeur propres une surface typique possède-t-elle ?

Question 2? Quelles sont les propriétés statistiques des fonctions de comptage dans la
limite g → +∞ ?

Question 3? La loi de Weyl et le théorème des géodésique primitives peuvent-ils être
rendus uniformes s’il sont restreints à un ensemble de surfaces typiques ?

Question 4? Est-il possible d’améliorer les bornes de multiplicité, typiquement ?

L’apparition récente de plusieurs nouveaux modèles et outils a contribué à la po-
pularité croissante de cette idée au cours des dernières années. Nous tentons de fournir
une description de ce domaine en évolution rapide.

Du fait des liens profonds entre le modèle de Weil–Petersson et la géométrie des
surfaces aléatoires, obtenir des informations sur la géométrie des surfaces typiques est
en général plus direct, et les informations spectrales en découlent ensuite. Ainsi, nous
présentons les résultats dans cet ordre. Nous indiquons les numéros des différentes ques-
tions auxquelles nous donnons des éléments de réponse dans les titres des paragraphes.

2.3.3 Résultats géométriques

Premiers résultats (1?) Mirzakhani a présenté une méthodologie et des outils per-
mettant l’étude de la géométrie des surfaces aléatoires dans [Mir13], ainsi que des
premières bornes sur de nombreuses quantités géométriques importantes.

• Il n’existe pas de borne inférieure typique pour la longueur de la systole :

∀ε > 0, PWP
g (`1 ≥ ε) 9

g→+∞
1.

• La constante de Cheeger

h(X) = inf

{
`(∂A)

VolX(A)
où X = A tB et VolX(A) ≤ VolX(B)

}
,
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qui quantifie à quel point il est difficile de déconnecter la surface, est toujours
plus petite que 1 + o(1) dans la limite de grand genre [Che75]. Typiquement,
h(X) ≥ log 2

2π+log 2
≈ 0.099.

• Le diamètre d’une surface typique est inférieur à 40 log g. Cette borne est optimale
à multiplication par une constance près, car le diamètre d’une surface hyperbo-
lique compacte de genre g est toujours ≥ log(4g − 2).

Mis à part le fait que la longueur de la systole ne peut être bornée inférieurement,
tous les résultats prouvés dans [Mir13] semblent indiquer que les surfaces typiques de
grand genre sont très � connectées � ou � compressées � – au contraire de l’exemple
représenté en Figure 2.6.

Figure 2.6 : Une surface atypique de grand genre : sa constante de Cheeger tend vers
zéro quand g → +∞ et son diamètre crôıt linéairement en fonction de g.

Des résultats qualitativement similaires ont été obtenus dans le modèle des surfaces
de Bely̆ı aléatoires par Brooks et Makover, la seule différence connue à ce jour est
l’existence d’une borne inférieure pour la longueur de la systole `1 [BM04, Theorem 0.2].

Statistique des fonctions de comptage pour une fenêtre fixée (2?) Mirzakhani
et Petri ont prouvé dans [MP19] que pour toute fenêtre [a, b] fixée, la fonction de
comptage N`

X(a, b) converge vers une loi de Poisson de paramètre

λ(a, b) =

∫ b

a

et + e−t − 2

2t
dt

quand le genre g tend vers l’infini. Les lois de Poisson sont utilisées pour modéliser des
événements rares. Ainsi, la présence de petites géodésiques peut être vue comme un
événement � rare � mais non atypique.

Dans [MP19], les auteurs ont également établi l’indépendance des fonctions de comp-
tage sur des fenêtres disjointes, et calculé la loi limite de la systole `1.

Répartition des géodésiques � courtes � sur la surface (1?) Le chapitre 4 de
cette thèse est dédié à l’amélioration de la description des géodésiques � courtes � sur
les surfaces typiques : plutôt que d’étudier des fenêtres fixées comme dans [MP19], nous
étudions des géodésiques de longueur proportionnelle à log g.

Remarquons que log g est une longue distance sur une surface typique, comparable
à son diamètre. Le choix de cette échelle est motivé par le fait que, au même titre
que les valeur propres λ < 3

16
apparaissent dans le théorème des géodésiques premières

[Hub59], nous nous attendons à rencontrer les géodésiques de longueur logarithmique
en démontrant des estimées spectrales.
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Nous montrons que, même si, typiquement, les géodésiques fermées de longueur pro-
portionnelle à log g existent, elles sont rares et peuvent être décrites assez précisément.
Cette affirmation s’appuie sur deux propriétés, adaptées de la théorie des graphes : la
convergence de Benjamini–Schramm (section 4.1) et l’hypothèse � tangle-free � (section
4.2). Ces deux notions ont des conséquences significatives sur le spectre des surfaces
typiques, qui sont présentées dans les chapitres 5 et 6.

Pour un nombre réel L > 0, la partie L-fine d’une surface X est définie comme étant

X−(L) = {z ∈ X : InjRadX(z) < L}

où InjRadX(z) est le rayon du plus grand disque plongé de centre z.

Nous prouvons le résultat suivant, qui peut être vu comme un énoncé de convergence
au sens de Benjamini–Schramm des surfaces typiques vers le plan hyperbolique H.

Théorème (Théorème 4.1). Pour a < 1
3
, l’aire de la partie (a log g)-fine d’une surface

typique est négligeable devant l’aire de la surface entière.

La preuve est fondée sur le fait que la partie fine se situe autour de géodésiques
courtes (voir Figure 2.7a), et une borne sur leur nombre. Il est bien connu que cette
notion, adaptée de la théorie des graphes [BS01] à un cadre continu dans [ABB+11], a
des applications en théorie spectrale.

(a) Une surface avec trop de géodésiques
courtes, et donc une partie fine d’aire trop
importante.

(b) Une surface avec un amas de
géodésiques courtes, et donc des petits
pantalons.

Figure 2.7 : Exemples de surfaces atypiques.

Si la convergence de Benjamini–Schramm nous indique que les géodésiques courtes
constituent une petite proportion de la surface, elle ne donne pas d’information sur leur
répartition. Ces géodésiques courtes peuvent-elles être regroupées toutes ensemble, ou
doivent-elles être situées sur différentes parties de la surface ? Nous avons répondu à
cette question dans [MT21], une collaboration avec Joe Thomas.
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Inspirés par le fait que la présence d’amas de géodésiques courtes implique l’existence
de petites surfaces plongées, comme représenté en Figure 2.7b, nous avons défini une
notion de surface � tangle-free � (ou non emmêlées) comme suit.

Définition (Définition 4). Pour un nombre réel L > 0, nous disons qu’une surface est
L-tangle-free si elle ne contient pas de pantalons ou tore à un trou de bord de longueur
totale inférieure à 2L.

Nous montrons que les surfaces typiques sont ((1 − ε) log g)-tangle-free pour tout
ε > 0, tandis que toutes les surfaces de grand genre g sont (4 log g+O (1))-tangled. Nous
en déduisons des conséquences géométriques significatives, dont les résultats suivants.

Theorem (Théorème 4.9, Proposition 4.14 et Corollaire 4.15). Pour L = (1− ε) log g,
typiquement,

• toutes les géodésiques fermées de longueur ≤ L sont simples

• deux géodésiques fermées telles que `(γ1) + `(γ2) < L ne s’intersectent pas

• le
(
L−`

2

)
-voisinage d’une géodésique fermée de longueur ` < L est un cylindre

plongé (beaucoup plus large que celui garanti par le lemme du collier)

• la topologie d’une boule de rayon L/8 est celle d’une boule ou d’un cylindre.

Nie, Wu et Xue ont prouvé dans [NWX20] que la longueur de la systole séparante
est typiquement 2 log g, et d’autres résultats dans le même esprit à la même échelle
log g.

Multiplicités (4?) Soit ε ∈ (0, 1). Nos résultats [MT21], couplés avec [MP08], per-
mettent d’affirmer que, typiquement, il n’y a pas de multiplicités dans le spectre des
longueurs avant la longueur (1− ε) log g :

∀i 6= j tel que `i, `j ≤ (1− ε) log g, `i 6= `j.

En particulier, les longueurs de haute multiplicité construites dans [Hor72] sont typi-
quement supérieures à (1− ε) log g.

2.3.4 Résultats spectraux

Les nouveaux résultats publiés dans [Mon21] sont un des points forts de cette thèse :
il s’agit d’un des premiers articles décrivant le spectre des surfaces hyperboliques com-
pactes typiques. Nous avons montré que la densité µH représentée figure 1.8a est ty-
piquement une bonne approximation de la densité du spectre d’une surface de grand
genre.
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Deux équipes indépendantes ont récemment prouvé qu’il n’y a pas de valeur propre
en dessous de 3

16
[WX21, LW21]. Les informations que nous possédons à ce jour sont

résumées sur la figure 2.8a. Ces résultats sont des adaptations naturelles de résultats
similaires pour les graphes réguliers typiques, comme suggéré dans la figure 2.8 – nous
détaillons ces liens dans la section 2.4.

(a) Surface hyperbolique compacte typique. (b) Graphe 3-régulier typique.

Figure 2.8 : Illustration des informations que nous possédons sur l’histogramme du
spectre pour une surface hyperbolique ou un graphe typique (après normalisation par
l’aire ou le nombre de sommets).

Présentons maintenant ces résultats plus en détail, ainsi que quelques questions
ouvertes.

Nombre de petites valeurs propres (1?) Le premier résultat spectral dans la
littérature est la borne inférieure

λ1 ≥
1

4

(
log 2

2π + log 2

)2

≈ 0.002 typiquement

qui est une conséquence immédiate de la borne sur la constante de Cheeger prouvée
par Mirzakhani dans [Mir13], grâce à l’inégalité de Cheeger [Che70].

Nous prouvons une borne sur le nombre de petites valeurs propres dans la section 5.2.

Théorème (Théorème 5.2). Pour une surface typique X,

∀b ≥ 0,
N∆
X(0, b)

VolX(X)
≤ 32 g−

1
27

( 1
4
−b)(log g)−

3
2 . (2.3)

La qualité de cette majoration dépend de la position relative de b et 1
4
.

• En prenant b = 1
4
, nous obtenons que le nombre de petites valeurs propres d’une

surface typique est un O
(
g(log g)−

3
2

)
, ce qui est une amélioration de la borne

optimale 2g − 2 de [OR09] par une correction logarithmique.
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• Si b < 1
4
, nous obtenons une correction additionnelle par une puissance de g

négative, qui s’améliore quand b s’éloigne de l’intervalle [1
4
,+∞).

• Quand b > 1
4
, la borne est toujours vraie, mais moins intéressante.

Rappelons qu’aucun de ces résultats n’est vérifié lorsque l’on pince une décomposition
en pantalons : dans ce cas, pour tout ε > 0, le nombre de valeurs propres dans [0, ε] at-
teint 2g−2, et le nombre de valeurs propres dans [1

4
, 1

4
+ε] tend vers l’infini. Ces surfaces

extrêmement pincées sont donc, en effet, atypiques pour le modèle de Weil–Petersson,
et les exclure de l’étude permet d’améliorer les résultats connus.

Fonctions de comptage : borne supérieure et équivalent (2?)

Dans [Mon21], nous étudions la fonction de comptage N∆
X(a, b) à l’aide de la conver-

gence de Benjamini–Schramm et de la formule des traces de Selberg. Nous prouvons les
résultats suivants, dont les énoncés précis et preuves se situent dans la section 5.3.

Théorème (Théorèmes 5.8 et 5.9). Pour une surface typique X,

• pour tout 0 ≤ a ≤ b,

N∆
X(a, b)

VolX(X)
= O

(
b− a+

√
b+ 1

log g

)
. (2.4)

• pour tout 0 ≤ a ≤ b tels que b− a�
√

b+1
log g

,

N∆
X(a, b)

VolX(X)
∼ µH(a, b) :=

1

4π

∫ +∞

1
4

tanh

(
π

√
λ− 1

4

)
1[a,b](λ) dλ (2.5)

quand b et/ou g tend vers l’infini.

Toutes les constantes implicites de cet énoncé sont des constantes numériques,
indépendantes de X, g, a et b.

La quantité µH(a, b) est la densité spectrale du plan hyperbolique, représentée en
Figure 2.8a. Elle est supportée sur [1

4
,+∞).

En prenant une fenêtre fixée [a, b], nos résultats donnent une première réponse à la
question 2?. L’étape suivante consisterait à étudier les corrélations entre les fonctions
de comptage de deux fenêtres disjointes, ou améliorer les vitesses de convergence des
bornes.
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Applications Les résultats prouvés dans [Mon21] ont deux corollaires importants.

• Comme µH(0, b) est équivalente à b
4π

quand b tend vers l’infini, nous pouvons
déduire de l’équation (2.5) une loi de Weyl uniforme

N∆
X(a, b)

VolX(X)
=

b

4π
+Og

(√
b log b

)
,

et ainsi répondre à la question 3?.

• La borne supérieure (2.4), appliquée à une fenêtre qui rétrécit autour d’une valeur
propre, implique une borne sur la multiplicité de toute valeur propre λ en fonction
de λ et g. En utilisant l’équation (2.5) pour estimer la taille typique de λj pour
tout j, nous prouvons une amélioration de la borne déterministe linéaire prouvée
dans [Bes80] (Question 4?) dans la section 5.4.

Théorème (Corollaires 5.28 et 5.29). Pour une surface typique X,

∀j ≥ 1, mX(λj) = O

g
√

1 + j
g

log g

 .

Ces estimées ont également été utilisées dans [LMS20] afin de démontrer un résultat
d’ergodicité quantique pour les surfaces typiques de grand genre.

Trou spectral (1?) Est-il possible d’améliorer la borne inférieure de λ1 prouvée par
Mirzakhani ? L’un des résultats les plus attendus dans le domaine de la théorie spectrale
des surfaces hyperboliques compactes est une preuve de la conjecture suivante, formulée
dans [Wri20].

Conjecture. Pour tout ε > 0,

lim
g→+∞

PWP
g

(
λ1 ≥

1

4
− ε
)

= 1.

D’après [Che75], la valeur 1
4

est le plus grand nombre pour lequel cette affirmation
peut être vérifiée. Les résultats de Mondal [Mon15], en genre 2, sont encourageants. Il
est démontré que l’ensemble des surfaces de genre 2 telles que λ1 ≥ 1

4
est non borné

et déconnecte l’espace des modules M2. En particulier, de nombreuses surfaces de
genre 2 vérifient la conjecture. Le résultat impliquerait l’existence de surfaces de genre
arbitrairement grand telles que λ1 ≥ 1

4
−ε, répondant ainsi positivement à la conjecture

de Buser–Burger–Dodziuk [BBD88].
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L’introduction de la notion de surface tangle-free dans [MT21] est motivée par
nos recherches sur cette conjecture, en collaboration avec Nalini Anantharaman. Nous
présentons quelques éléments autour de cette conjecture dans le chapitre 6.

Une version plus faible de la conjecture, avec 3
16

au lieu de 1
4
, a été obtenue très

récemment par deux équipes indépendantes [LW21, WX21]. La même borne a été
établie dans le modèle des revêtements aléatoires [MNP20]. Même s’il existe quelques
différences significatives entre la méthode que nous suggérons et celles qui ont été uti-
lisées (nous en décrirons certaines dans le chapitre 6), beaucoup d’éléments sont simi-
laires. Notamment, des définitions et résultats de [MT21] ont été utilisés indépendam-
ment dans [LW21].

La valeur 3
16

apparâıt parce que les calculs dans les deux articles sont effectués à une
précision 1/g. Afin d’obtenir la conjecture pour 1

4
, nous savons qu’il est nécessaire d’être

capable de faire des calculs à une précision arbitrairement grande, i.e. à des erreurs de
taille 1/gN près, pour N � 1.

Afin de rendre cela possible, nous avons :

• calculé un développement asymptotique en grand genre des volumes de Weil–
Petersson qui apparaissent naturellement dans les calculs de probabilité dans le
modèle de Weil–Petersson (Théorèmes 3.18 et 3.19)

• généralisé l’hypothèse tangle-free, ajoutant un paramètre de sorte que la proba-
bilité de ne pas être tangle-free puisse être prise comme étant O

(
1/gN

)
pour un

N arbitrairement grand (Théorèmes 4.19 et 4.20).

2.4 Comparaison avec les graphes réguliers

Pour conclure cette introduction, nous exposons succinctement la correspondance entre
les graphes réguliers et les surfaces hyperboliques compactes, qui est la motivation au
cœur de beaucoup des résultats présentés dans cette thèse.

Soit d un entier supérieur à 3. Dans la suite, nous appelons graphe d-régulier tout
graphe tel que chaque sommet a exactement d voisins. Soit n le nombre de sommets
d’un tel graphe.

Les graphes réguliers et les surfaces hyperboliques compactes sont des objets aux
ressemblances surprenantes, d’un point de vue géométrique et spectral. Voici deux faits
qui contribuent à ces similarités :

• le voisinage de tous les points sur ces objets est le même (un petit disque hyper-
bolique ou exactement d sommets)

• la taille (aire ou nombre de sommets) d’une boule crôıt exponentiellement avec
son rayon.
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surface hyp compacte graphe d-régulier

limite considérée : genre g → +∞ nombre de sommets n→ +∞
modèle probabiliste : loi de Weil–Petersson PWP

g loi uniforme P(d)
n

spectre inclus dans : [0,+∞) [−d, d]

valeurs propres triviales : 0 d, et parfois −d (⇔ bipartite)

revêtement universel : plan hyperbolique H arbre infini d-régulier

et son spectre : [1
4
,+∞) [−2

√
d− 1, 2

√
d− 1]

limite typique de densité spectrale de H loi de Kesten–McKay

de la densité spectrale : [Mon21] [Kes59, McK81]

trou spectral : λ1 d− λ+

où λ+ := max{|λi| : |λi| < d}
borne déterministe : λ1 ≤ 1

4
+ o(1) [Che75] λ+ ≥ 2

√
d− 1− o(1) [Nil91]

borne probabiliste : λ1 ≥ 3
16
− ε [WX21, LW21] λ+ ≤ 2

√
d− 1 + o(1) [Fri03]

Table 2.2 : Comparaison entre les propriétés des valeurs propres (λj)j≥0 du laplacien ∆
sur une surface hyperbolique compacte et des valeurs propres λ1 ≥ . . . ≥ λn de la
matrice d’adjacence A = dIn −∆ d’un graphe d-régulier.

Toutes les définitions et résultats présentés dans cette thèse ont des homologues dans
le monde des graphes réguliers, qui sont énumérées dans la Table 2.2. Les résultats sont
souvent (voire toujours) démontrés bien avant pour les graphes, d’une part parce qu’ils
sont plus simples à étudier (car ce sont des modèles finis), mais aussi car ce sont des ob-
jets fondamentaux qui apparaissent dans d’innombrables domaines des mathématiques
et des sciences.

2.5 Organisation de cette thèse

L’organisation des différents chapitres de cette thèses et la manière dont ils dépendent
les uns des autres sont présentés dans la figure 2.9. Nous avons mis en valeur les nou-
veaux résultats en les encadrant avec une ligne continue.

Voici un résumé court des différents chapitres.

• Dans le chapitre 3, nous introduisons le modèle probabiliste de Weil–Petersson. Le
discours se veut assez informel, mais nous indiquons des références précises, et mo-
tivons les idées et outils essentiels dans ce domaine. La dernière section de ce cha-
pitre contient un nouveau développement asymptotique, annoncé dans [AM20].

• Les chapitres 4 et 5 constituent le cœur de cette thèse. La plupart des nouveaux
résultats sont extraits de [Mon21, MT21] et ont été significativement réorganisés :
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les résultats géométriques se trouvent dans le chapitre 4 et les résultats spectraux
dans le chapitre 5.

• Le chapitre 6 présente des avancées récentes qui pourraient permettre de prouver
que les surfaces typiques ont un trou spectral optimal.

• Dans l’annexe A, nous étendons certains des résultats principaux de cette thèse à
un autre modèle probabiliste, le modèle des surfaces de Bely̆ı aléatoires introduit
par Brooks et Makover [BM04].

Présentation détaillée du modèle

Sections 3.1 et 3.2

Développement asymptotique

Section 3.3, [AM20]

Convergence de
Benjamini–Schramm

Section 4.1, [Mon21]

L’hypothèse
� tangle-free �

Section 4.2, [MT21]

Généralisation de
l’hypothèse tangle-free

Section 4.3

Estimation de la densité spectrale

Sections 5.2 et 5.3, [Mon21]

Multiplicités

Section 5.4, [Mon21]

Trou spectral

Chapitre 6

Chapitre 3 : Modèle probabiliste

Chapitre 4 : Géométrie

Chapitres 5 et 6 : Spectre

Figure 2.9 : Organisation des chapitres de cette thèse.



Chapter 3

The Weil-Petersson probabilistic
model

The aim of this chapter is to introduce all the definitions and tools that are necessary
to sample random surfaces in the Weil–Petersson model. This is done in two steps:

• we define and describe the sample space, the ‘set of compact hyperbolic surfaces’,
and equip it with a probability measure in Section 3.1;

• we present various tools used to study random surfaces in Section 3.2.

The last section presents new asymptotic expansions for volume polynomials and
can be omitted at first read; it will only be used in Chapter 6.

3.1 Description of the set of compact hyperbolic

surfaces

In order to define a notion of random compact hyperbolic surface, let us introduce a
sample space, the ‘set of compact hyperbolic surfaces’ or moduli space, and equip it with
local coordinates, the Fenchel–Nielsen coordinates. We will explain how the standard
volume form in these coordinates can be renormalised to equip the set of surfaces with
a natural probability measure.

3.1.1 Prerequisite: hyperbolic pairs of pants

A key character that will appear in many instances in this manuscript is the hyperbolic
pair of pants. A pair of pants is a surface of genus 0 with 3 boundary components, or a
three-holed sphere. Pairs of pants are very important in hyperbolic geometry, because
they satisfy the two following key properties.

49
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Theorem 3.1 ([Bus92, Theorem 3.1.7]). For any lengths x1, x2, x3, there is a unique
hyperbolic pair of pants with boundary geodesics γ1, γ2, γ3 such that

∀i ∈ {1, 2, 3}, `(γi) = xi.

Proposition 3.2. Any compact hyperbolic surface can be cut into a family of 2g − 2
hyperbolic pairs of pants.

Proof. In order to cut a compact hyperbolic surface, we start by picking a simple closed
geodesic on the surface and cut along it. We obtain one or two hyperbolic surfaces with
boundary geodesics, depending on the curve we started with. We repeat this operation,
cutting along more and more simple closed geodesic, as represented in Figure 3.1. The
process stops when the surface has been entirely cut into pairs of pants, because they
do not contain any simple closed geodesic.

Figure 3.1: Cutting a genus 2 surface along 3 curves to obtain 2 pairs of pants.

The Euler characteristic of a genus g surface is −2g + 2 and that of a pair of pants
is −1. By additivity of the Euler characteristic, there is always 2g− 2 pairs of pants in
a decomposition, delimited by 3g − 3 simple closed geodesics.

Note that pairs of pants are not compact hyperbolic surfaces but rather bordered
hyperbolic surfaces (see Section 3.1.2.3). Bordered hyperbolic surfaces will appear
throughout this thesis for the same reason that they appear here: as byproducts of
cutting compact hyperbolic surfaces along closed geodesics.

3.1.2 The set of hyperbolic surfaces

3.1.2.1 The moduli space Mg: definition and first observations

For a genus g ≥ 2, let

Mg := {compact hyperbolic surfaces of genus g}�{isometries}

denote the moduli space of genus g surfaces. Throughout this thesis, when taking
random genus g surfaces, the set Mg will be the sample space.

What does the set Mg look like? First, it is not not empty, because there exists
compact hyperbolic surfaces of any genus g ≥ 2. Let us take one element X ∈Mg and
explore its neighbourhood inMg. There are two simple ways to move around the point
X ∈Mg continuously, represented in Figure 3.2.

• It is possible to pinch or expand a simple closed geodesic.
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(a) Change of the length of γ. (b) Twist along γ.

Figure 3.2: Two deformations of a compact hyperbolic surface X.

• It is possible to twist the surface along a simple closed geodesic.

This seems to indicate that the moduli space is a continuous object, like a manifold.
If so, what is its dimension? If we admit that the operations described in Figure 3.2

generate all of the continuous deformations of X, then this question becomes: how many
of these operations can we do independently? Thanks to the fundamental property of
pairs of pants, Theorem 3.1, we can perform these two operations on all of the 3g − 3
curves cutting a surface into a family of pairs of pants. This is the reason why the
moduli space is an object of dimension 2 × (3g − 3) = 6g − 6. We will make this
intuition precise in Section 3.1.3, when we introduce a set of parameters describing the
moduli space.

Unfortunately, the moduli spaceMg is not a smooth manifold but rather an orbifold
(a generalisation of manifolds which can contain certain types of singularities). These
singularities can be explained by the fact that some compact hyperbolic surfaces have
exceptional isometries, and they correspond to singular points, as shown in Figure 3.3.

Figure 3.3: A path on the moduli space M2. The left and right surfaces are isometric
and therefore correspond to the same point. The middle surface is a singular point.
This is due to its exceptional symmetry, that comes from the equality of the lengths
on sides A and B. Surfaces satisfying this equality are a sort of ‘mirror’ in the moduli
space M2 of compact hyperbolic surfaces of genus 2.
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3.1.2.2 The universal cover of Mg

To understand the quotient by isometries better, we will benefit from working in the
much nicer universal cover of Mg, the Teichmüller space Tg. In this set, the two
isometric surfaces from Figure 3.3 will be two different points, hence removing the
‘mirror’-singularity that we observed.

In order to define Tg, let us set Sg to be a fixed genus g topological surface called
the base surface. The Teichmüller space is a set of marked surfaces (X,φ): the marking
φ tells us how to equip the fixed base surface Sg with the hyperbolic structure X. More
precisely,

Tg =

{
(X,φ) :

X compact hyperbolic surface of genus g
φ : Sg → X homeomorphism

}
� ∼

where the equivalence relation ∼ is defined by:

(X,φ) ∼ (Y, ψ)⇔ ∃ isometry h : X → Y s.t. ψ−1 ◦ h ◦ φ is isotopic to idSg .

Figure 3.4 illustrates the difference between moduli spaces and Teichmüller spaces:
for one fixed compact hyperbolic surface X of genus g, corresponding to one point on
the moduli spaceMg, there are many distinct markings φ : Sg → X, each leading to a
different point (X,φ) in the Teichmüller space Tg.

Figure 3.4: Three different markings for one compact hyperbolic surface of genus 2.
They are obtained by precomposition of one marking φ by two homeomorphisms of Sg:
a positive involution σ switching the two ‘holes’ of Sg and a Dehn twist τ around the
curve α (see [FM12, Chapter 3]).

The moduli space Mg can be obtained from the Teichmüller space by ‘forgetting
the marking’. More precisely, the mapping class group of Sg

MCGg := {homeomorphisms Sg → Sg}�isotopy

acts on the Teichmüller space Tg by precomposition of the marking:

∀h ∈ MCGg,∀(X,φ) ∈ Tg, h · (X,φ) := (X,φ ◦ h).
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Then, the moduli space is the quotient of the Teichmüller space for this action:

Mg = Tg�MCGg.

We observe that the examples of Figure 3.4 have been constructed by exploring an
orbit of the action of MCGg on Tg: starting with an element (X,φ), we precomposed
the marking φ by elements σ, τ ∈ MCGg.

3.1.2.3 Extension to bordered hyperbolic surfaces

Let us now extend the previous definitions to bordered hyperbolic surfaces, i.e. hyper-
bolic surfaces of finite type with geodesic boundary. Note that by finite type, we mean
that the fundamental group is finitely generated.

The topology of such a surface depends on its genus g, its number of cusps c and its
number of boundary geodesics b. Topologically, cusps and boundary components play
the same role, and we will refer to cusps as boundary geodesics of length 0. Then, the
topology of a surface is entirely determined by its signature (g, n), with n = c + b the
number of boundary components (geodesics or cusps).

Figure 3.5: A bordered hyperbolic surface of genus 3 with one cusp and two geodesic
boundary components – its signature is (3, 3).

Why talk about bordered surfaces when our main focus is compact surfaces? This
will actually be absolutely necessary: in order to describe random compact surfaces,
we will need to cut them into smaller surfaces, hence obtaining pieces with boundary
components. This idea is central in several of Mirzakhani’s breakthroughs in the the-
ory of random surfaces, such as Mirzakhani’s integration formula (Theorem 3.8) and
topological recursion (see Section 3.2.2).

Let g, n ∈ N0 such that 2g − 2 + n > 0, which implies that bordered hyperbolic
surfaces of signature (g, n) exist. For a length vector x = (x1, . . . , xn) ∈ Rn+, we define
the moduli space Mg,n(x) to be the set of bordered hyperbolic surfaces of genus g with
n geodesic boundary components β1, . . . , βn such that ∀i, `(βi) = xi, quotiented by the
isometries preserving the set βi set-wise for all i.

Example 1. For (g, n) = (0, 3), the elements of M0,3(x) are pairs of pants. By Theo-
rem 3.1, there exists exactly one pair of pants with prescribed boundary lengths x1, x2,
x3. As a consequence, the moduli space M0,3(x) is reduced to exactly one element.

Inspired by the compact case, we set Sg,n to be a fixed topological surface of signature
(g, n) with n boundary components β1, . . . , βn. Then, the moduli space can be seen as
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the quotient
Mg,n(x) = Tg,n(x)�MCGg,n

where Tg,n(x) is the Teichmüller space defined by

Tg,n(x) :=

(X,φ) :
X bordered hyperbolic surface of signature (g, n)
φ : Sg,n → X homeomorphism
∀i, φ(βi) is a boundary geodesic of length xi

� ∼,
the equivalence relation ∼ is the one defined in the compact case (replacing Sg by Sg,n),
and MCGg,n the mapping class group of Sg,n

MCGg,n :=

{
homeomorphisms h : Sg,n → Sg,n
such that h(βi) = βi for all i

}
�isotopy

acting on Tg,n(x) by precomposition of the marking.
Whenever x = (0, . . . , 0), and therefore all the boundary components of the surfaces

are cusps, in order to simplify notation we set

Mg,n :=Mg,n(0, . . . , 0) and Tg,n := Tg,n(0, . . . , 0).

We observe that the definitions are compatible with the compact case, so that Tg and
Mg correspond to Tg,0(x) and Mg,0(x) respectively, where x ∈ R0

≥0 is the ‘empty
vector’.

3.1.3 Fenchel–Nielsen coordinates

Let g, n ∈ N0 such that 2g− 2 +n > 0 and x ∈ Rn≥0 be a length vector. Let us describe
the Teichmüller space Tg,n(x) by introducing global coordinates, the Fenchel–Nielsen
coordinates. We only present an intuition for the construction of these coordinates. A
detailed construction can be found in [Bus92, Sections 3.6, 6.2 and 6.3], and precise
references for the main technical steps are provided in the following.

The idea is to find a bijective map of the form

R... → Tg,n(x)

real coordinates 7→ (X,φ) mod ∼ .

In other words, we want to be able to describe entirely a marked hyperbolic surface
with a set of real numbers. This will be achieved thanks to Theorem 3.3.

3.1.3.1 How to build a bordered hyperbolic surface

We first focus on describing any bordered hyperbolic surface X using a set of param-
eters. This will be achieved by building the surface starting with some small building
blocks. We want to be able to describe each building block and the way to assemble
them, with a set of real coordinates. For this reason, pairs of pants are a great set of
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(a) Pair of pants decomposition S1,2. (b) The hyperbolic pairs of pants (Yj(`))j .

Figure 3.6: Cutting into building blocks and defining each of them individually.

building blocks: by Theorem 3.1, their geometry is entirely described by the list of the
lengths of their boundary components.

As a consequence, the first step of the construction is to cut the base surface Sg,n
into pairs of pants, as represented on Figure 3.6a. More precisely, we pick a family
Γ = (γ1, . . . , γN) of disjoint simple closed curves such that the (disconnected) surface
Sg,n \Γ obtained by cutting Sg,n along the curves of Γ is a family of pairs of pants (Yj)j.

The Euler characteristic of a surface of signature (g, n) is χg,n = −2g + 2 − n. In
particular, the Euler characteristic of a pair of pants is χ0,3 = −1. By additivity, the
number of pairs of pants in the decomposition is exactly 2g− 2 + n. As a consequence,
the pairs of pants are delimited by 6g − 6 + 3n = 2N + n boundary components, and
therefore, N = 3g − 3 + n.

For every j, the topological pair of pant Yj on Sg,n is delimited by 3 closed curves,
which are either boundary components of Sg,n or curves of Γ. In order to equip the pairs
of pants with a hyperbolic metric, we need to pick a length for each of these boundary
curves, like in Figure 3.6b. We take a length vector ` = (`1, . . . , `N) ∈ RN>0 and define
a family of hyperbolic pairs of pants (Yj(`))j such that:

• the lengths of the boundary component corresponding to βi ⊂ ∂Sg,n is xi

• the lengths of the two boundary components corresponding to γi ∈ Γ is `i.

(a) The twist angle when gluing two pants. (b) The hyperbolic surface X(`, τ).

Figure 3.7: Gluing the building blocks to obtain a surface in Mg,n(x).

We now wish to glue the pairs of pants (Yj(`))j to form a bordered hyperbolic surface.
When gluing hyperbolic pairs of pants along two boundary components, there is a degree
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of freedom, the twist angle τ ∈ R. It corresponds to the intrinsic distance between
the bases of the common perpendiculars on the two pairs of pants, as represented on
Figure 3.7a (see [Bus92, Section 3.3] for more details).

We pick a family of twist angles τ = (τ1, . . . , τN) ∈ RN . For all i ∈ {1, . . . , N},
we glue the two boundary components associated to γi with the twist angle τi. This
defines a bordered hyperbolic surface X(`, τ), represented on Figure 3.7b.

The fact that we choose the twist angle τi as an element of R rather than the circle
of length `i might surprise the reader. Indeed, replacing τi by τi + `i does not change
anything to Figure 3.7a. The difference between these two points will appear in the
next step of the construction, when picking the marking: the two markings will differ
by precomposition by a Dehn-twist along γi, as in Figure 3.4.

Another way to make sense of this is to remember that the Teichmüller space Tg,n(x)
is the universal cover of the moduli space Mg,n(x). While the twist parameters live
in the torus R�`1Z× . . .× R�`NZ when describing the moduli space, they live in its
universal covering RN for the Teichmüller space.

3.1.3.2 Definition of the marking

So far, we have constructed a map which associates to a set of Fenchel–Nielsen coor-
dinates (`, τ) a bordered hyperbolic surface X(`, τ). This map is a surjection onto the
moduli spaceMg,n(x) (see [Bus92, Theorem 3.6.4] when n = 0). A lot of these surfaces
are isometric: for instance, a Dehn twist around a component γi transforms X(`, τ)
into the isometric surface X(`, (τ1, . . . , τi + `i, . . . , τN)). But as we hinted in Figure 3.4,
these surfaces will be distinguished in the Teichmüller space by their markings

φ(`, τ) : Sg,n → X(`, τ)

which we now introduce.

Figure 3.8: The marking φ(`, τ) : Sg,n → X(`, τ) can be constructed by equipping Sg,n
with a hyperbolic metric, and seeing X(`, τ) as a deformation of Sg,n.

Let us identify the base surface Sg,n with the bordered hyperbolic surface X(1,0),
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with all lengths parameters equal to one and all twist angles equal to zero (see Fig-
ure 3.8). Then, we define φ(`, τ) as the composition tw`,τ ◦ str`, where1

• str` : X(1,0)→ X(`,0) ‘stretches’ each curve γi so that its length goes from 1 to
`i, while keeping all the twist angles to zero;

• tw`,τ : X(`,0)→ X(`, τ) ‘twists’ the surface in a collar neighbourhood of each γi
so that the twist angle goes from 0 to τi.

This concludes the construction of the parametrisation of the Teichmüller space,
thanks to the following theorem.

Theorem 3.3 ([Bus92, Theorem 6.2.7]). For any g, n ∈ N0 such that 2g − 2 + n > 0,
any fixed pair of pants decomposition Γ of the base surface Sg,n, and any length vector
x ∈ Rn≥0, the map

R3g−3+n
>0 × R3g−3+n → Tg,n(x)

(`, τ) 7→ [(X(`, τ), φ(`, τ))]∼

is a bijection. The parameters (`, τ) are called Fenchel–Nielsen coordinates.

This result allows us (with some additional work!) to define a topology, and even a
real analytic structure on the Teichmüller spaces (see [Bus92, Section 6.3]).

3.1.4 The Weil–Petersson symplectic structure

Now that we have introduced and described the set of surfaces, we now proceed to the
last step of the construction of a probabilistic setting: the choice of a measure. In order
to do so, we add more structure to the Teichmüller and moduli spaces, by equipping
them with a symplectic form.

3.1.4.1 Symplectic forms

We recall that a symplectic form ω on a manifold2 M of dimension 2N is a closed and
non-degenerate 2-form. The canonical symplectic form on the Euclidean space RN×RN
of coordinates (x1, . . . , xN , y1, . . . , yN) is

ω =
N∑
i=1

dxi ∧ dyi.

A symplectic form induces a volume form on the manifold M , defined by

Volω =
ω∧N

N !
·

On the Euclidean space with the canonical symplectic form, this volume form corre-
sponds to the Lebesgue measure dx1 . . . dxN dy1 . . . dyN .

1The construction of these maps can be found in [Bus92, Definition 3.2.4 and eq (6.2.3)].
2Let us recall that, actually, the moduli space Mg,n(x) is not a manifold but an orbifold, but this

is not an issue and symplectic forms can be defined the same way on orbifolds.
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3.1.4.2 The Weil–Peterson symplectic form

Throughout the rest of this section, we set g, n ∈ N0 such that 2g − 2 + n > 0 and x
a length vector in Rn≥0. Let N := 3g − 3 + n denote the dimension of the Teichmüller
space Tg,n(x). Our aim is to equip it with a ‘good’ symplectic form, and the associated
volume form.

Theorem 3.4 ([Wei58, Wol81]). There exists a symplectic form ωWP
g,n,x on Tg,n(x), called

the Weil–Petersson form, which:

• can be written in any set of Fenchel–Nielsen coordinates (`, τ) ∈ RN>0 × RN as

ωWP
g,n,x =

N∑
i=1

d`i ∧ dτi (3.1)

• is invariant by the action of the mapping class group MCGg,n and therefore de-
scends to the moduli space Mg,n(x).

There is no trivial reason to believe in the existence of such a symplectic form.
Indeed, we can easily construct one symplectic form by picking a pair of pants decom-
position of the base surface and using equation (3.1) as a definition. However, there is
no reason to expect that this form would be independent of the choice of the pair of
pants decomposition or invariant by the action of MCGg,n.

Weil equipped Teichmüller spaces with a symplectic form in [Wei58], but he did so
using a different viewpoint. Thanks to the uniformisation theorem [Gra94], there is
a correspondence between hyperbolic surfaces and Riemann surfaces. When we view
Tg,n(x) as a set of Riemann surfaces, it is possible to describe its cotangent space
in an intrinsic way and to define a symplectic form on it (using the Petersson inner
product). The advantage of this very natural definition is that it automatically grants
the invariance of the form by the action of MCGg,n. But since it is expressed in a
completely different setting, its relation to Fenchel–Nielsen coordinates is unclear.

In [Wol81], Wolpert proved that the form defined by Weil can be expressed in any
set Fenchel–Nielsen coordinates as is it in equation (3.1). This result is often called
Wolpert’s magic formula and is the fundamental tool on which all the theory of Weil–
Petersson random surfaces is built.

3.1.4.3 Weil–Petersson volumes

As explained at the beginning of his section, the symplectic form ωWP
g,n,x induces a volume

form VolWP
g,n,x on the Teichmüller and moduli spaces. In any set of Fenchel–Nielsen

coordinates (`, τ) ∈ RN>0 × RN ,

VolWP
g,n,x = d`1 ∧ . . . ∧ d`N ∧ dτ1 ∧ . . . ∧ dτN .

As a consequence, the total mass of the Teichmüller space Tg,n(x) = RN>0×RN is infinite.
This is not surprising because the Teichmüller space is very ‘large’: it contains many
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isometric surfaces, which are identified on the much smaller moduli space. Let us prove
the following statement.

Proposition 3.5. The total mass VolWP
g,n,x(Mg,n(x)) of the Weil–Petersson volume on

the moduli space Mg,n(x) is finite.

Proof. By Bers’ theorem [Ber85], there is a constant Bg,n,x such that any bordered
hyperbolic surface X of signature (g, n) with boundary of length x admits a pair of
pants decomposition Γ = (γ1, . . . , γN) such that for all 1 ≤ i ≤ N , `X(γi) ≤ Bg,n,x.

Figure 3.9: The two different topological pairs of pants decompositions of a genus 2
surface, and the corresponding graphs.

The pair of pants decomposition provided by Bers’ theorem will a priori depend on
the surface X. However, one can associate to a pair of pants decomposition Γ a graph
G(Γ): the vertices correspond to the pairs of pants, and two vertices are connected by
an edge when their pairs of pants are glued together – see Figure 3.9. Then, for two
pairs of pants decomposition Γ and Γ′ of Sg,n, there exists an element of the mapping
class group MCGg,n sending Γ on Γ′ if and only if the graphs G(Γ) and G(Γ′) are
isomorphic – see [GPY11]. Since there is a finite number of possible graphs, we can
pick a finite family of pairs of pants P such that every element of the moduli space
Mg,n(x) admits a representative in

⋃
Γ∈P{(`Γ, τΓ) : ∀i, 0 ≤ `Γ

i ≤ Bg,n,x}, where `Γ and
τΓ are the Fenchel–Nielsen coordinates associated to Γ.

Remains the question of the twist parameters. For any i, the Dehn twist around
the i-th curve of the pair of pants decomposition sends the point of Fenchel–Nielsen
coordinates (`, τ) to the translated point (`, (τ1, . . . , τi+`i, . . . , τN)), which are therefore
identified in the moduli space. As a consequence, up to precomposition by an element
of MCGg,n, we can always assume that all of the twist angles satisfy 0 ≤ τi ≤ `i.

Then, the set

D =
⋃
Γ∈P

{(`Γ, τΓ) : ∀i, 0 ≤ τΓ
i ≤ `Γ

i ≤ Bg,n,x}

contains at least one representative of each element of Mg,n(x). D is a finite union of
sets of finite volume, and the volume of the moduli spaceMg,n(x) is therefore finite.

Thanks to Proposition 3.5, we can set the following notations.
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Notation 1. For any g, n ∈ N0 such that 2g − 2 + n > 1 and any x ∈ Rn≥0, we set

Vg,n(x) := VolWP
g,n,x(Mg,n(x)).

Additionally, we define

∀x ∈ R3
≥0, V0,3(x) := 1

∀x ∈ R≥0, V1,1(x) :=
1

2
VolWP

1,1,x(M1,1(x))

We set Vg,n := Vg,n(0) and Vg := Vg,0 for g ≥ 2.

The definition for (g, n) = (0, 3) corresponds to the fact that for any x, the moduli
spaceM0,3(x) is reduced to exactly one element, the unique pair of pants of boundary
lengths x (see Theorem 3.1). The convention of dividing V1,1(x) by a factor two un-
fortunately varies throughout literature. We will provide more details on the reasons
behind this choice when explaining Mirzakhani’s integration formula in Section 3.2.1.

3.1.4.4 Definition of the probabilistic setting

We can now define our probability space. We focus on compact surfaces of high genus,
but similar notions can be defined for surfaces with cusps or boundary geodesics.

Definition 1. Let g ≥ 2 be an integer. A random surface of genus g is an element of
the moduli space Mg sampled with the probability measure

PWP
g :=

1

Vg
VolWP

g .

The expectation of a positive measurable random variable F :Mg → R≥0 is defined by

EWP
g [F ] :=

1

Vg

∫
Mg

F (X) dVolWP
g (X).

We say that a sequence of measurable events Ag ⊂Mg has high probability if

lim
g→+∞

PWP
g (Ag) = 1.

Thanks to this notion of ‘high probability event’, we will be able to prove properties
true for typical surfaces of high genus. Note that we could have decided to focus on
almost-sure events, that is to say events Ag ⊂Mg such that

PWP
g (Ag) = 1,

but this stronger definition is too restrictive. Our definition was adapted from random
graph theory: in this case, we say an event occurs with high probability if its probability
goes to one as the parameter (e.g. the number of vertices) goes to infinity – see [ER60,
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Bol01] for various examples. The motivation is clear: since there is only a finite number
of graphs with a given number of vertices, every single graph a priori has a non-zero
probability of appearing and as a consequence one single counter-example will cause
the probability to be strictly smaller than one. The situation is different for surfaces,
since the probability space contains no atoms, but we will see in Chapters 4 and 5
that random surfaces are extremely similar to random regular graphs. In particular,
unlikely counter-examples encountered for graphs are also events of small yet non-zero
probability for surfaces (see [Mir13, Theorem 4.2] and Theorems 4.1, 4.8 for instance).

Each result we prove with high probability comes with a surprising consequence: an
existence result. Indeed, if a sequence of events Ag ⊂Mg occurs with high probability,
then there is an integer g0 such that for any g ≥ g0, PWP

g (Ag) > 0 and in particular
Ag is not empty. This remark might seem quite naive, but thanks to the methods
presented in Section 3.2, it will frequently be easier to prove that a property is typical
rather than exhibit an example of a surface of arbitrarily high genus satisfying it.

3.2 A tool-kit to describe random surfaces

In this section, we present the main tools used to estimate probabilities and expectations
in the Weil–Petersson probability model.

The first tool, presented in Section 3.2.1, is the integration formula proved by Mirza-
khani in [Mir07a]. Using Mirzakhani’s integration formula will allow us to transform
questions about the properties of random surfaces into questions about the behaviour
of Weil–Petersson volumes. As a consequence, in order to reach a good understanding
of random surfaces, we need to compute and estimate Weil–Petersson volumes. This is
the aim of Sections 3.2.2 and 3.2.3, where we explain Mirzakhani’s recursion formula
[Mir07b] and provide various asymptotics in the high-genus limit [Mir13].

3.2.1 Mirzakhani’s integration formula

Let g ≥ 2 and F : Mg → R≥0 be a random variable3. How can one compute the
expectation of F for the Weil–Petersson probability measure?

The formula proved by Mirzakhani in [Mir07a] is an expression for EWP
g [F ] when F

belongs to a certain class of functions, geometric functions. This formula relies on the
symplectic structure on Mg and Wolpert’s magic theorem (Theorem 3.4).

Note that we will state the integration formula for any moduli space of bordered
surfaces Mg,n(x) for integers g, n ∈ N0 such that 2g − 2 + n > 0 and any length
vector x ∈ Rn≥0, because they will be useful. However, since we are mostly interested in
the probability measure PWP

g on Mg, the examples and illustrations will be set in the
compact setting.

3We will restrict ourselves to positive random variables for this discussion, but the results and
definitions can be extended to real or complex-valued integrable random variables, by the usual method.



62 CHAPTER 3. THE WEIL-PETERSSON PROBABILISTIC MODEL

3.2.1.1 Multi-curves and free-homotopy

As suggested by the name, geometric functions Mg,n(x)→ R depend on the geometry
of the elements of Mg,n(x) and more precisely on their closed geodesic multi-curves.
Let us recall a few usual definitions and notations.

A closed curve on a surface S is a continuous map c : [0, 1]→ S such that c(0) = c(1).
We say the curve is simple if it does not self-intersect.

Two closed curves c0 and c1 on a surface S are said to be freely homotopic if there is
a continuous map h : [0, 1]2 → S such that h|{0}×[0,1] = c0 and h|{1}×[0,1] = c1. This is an
equivalence relation. We will often consider curves up to free-homotopy and abusively
refer to a free-homotopy class [c] by one of its representative c.

A closed curve c on S is called essential if it is non-contractible and freely homotopic
to none of the boundary components (or cusps) of S. If X is a bordered hyperbolic
surface, and c is an essential closed curve on X, then there is a unique closed geodesic
in its free-homotopy class [Bus92, Theorem 1.6.6]. We define `X([c]) = `X(c) to be the
length of this geodesic representative.

Figure 3.10: Examples of multi-curves on a compact surface of genus 2.

A multi-curve Γ on a surface is a family of disjoint essential simple closed curves
(γ1, . . . , γk), so that for any indices i 6= j, γi is freely homotopic to neither γj nor γ−1

j .
As for closed curves, we will often consider multi-curves up to free-homotopy.

By [Bus92, Theorem 1.6.6-7], any free-homotopy class of multi-curves Γ = (γ1, . . . , γk)
has a representative which is a multi-geodesic. This means that it is possible to ‘tighten’
each curve γi and slide it to its geodesic representative, while keeping all of the curves
(γi)i simple and disjoint. We can therefore define the total length `X(Γ) and length

vector ~̀X(γ) of a multi-curve Γ as:

`X(Γ) :=
k∑
i=1

`X(γi) and ~̀
X(Γ) := (`X(γ1), . . . , `X(γk)).

3.2.1.2 Multi-curves on elements of Tg,n(x)

Let Γ be a multi-curve on Sg,n. For any marked hyperbolic surface (X,φ), the mark-
ing homeomorphism φ : Sg,n → X sends Γ onto a multi-curve φ(Γ) on the bordered
hyperbolic surface X, as illustrated on Figure 3.4 with two multi-curves α and β.

Proposition 3.6. Let Γ be a multi-curve with k components on the base surface Sg,n.
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The length function

Tg,n(x)→ Rk≥0

(X,φ) 7→ ~̀
(X,φ)(Γ) := ~̀

X(φ(Γ))

is a well-defined map.

Proof. We simply need to prove that the quantity ~̀X(φ(Γ)) is invariant for the equiva-
lence relation ∼. For any marked surface (Y, ψ) such that (X,φ) ∼ (Y, ψ), by definition,
there exists an isometry h : X → Y such that ψ−1 ◦ h ◦ φ is isotopic to the identity on
Sg,n. This implies that h ◦ φ(Γ) and ψ(Γ) are freely homotopic on Y and in particular

~̀
Y (ψ(Γ)) = ~̀

Y (h ◦ φ(Γ)) = ~̀
X(φ(Γ))

because h is an isometry.

In other words, there is a one-to-one correspondence between free homotopy classes
on the base surface Sg,n and closed geodesics on an element (X,φ) ∈ Tg,n(x).

3.2.1.3 Geometric functions on Mg,n(x)

As we saw in Figure 3.4, one free homotopy class on the base surface Sg,n can be sent
on many different free homotopy classes on one given surface X, by precomposition of
the marking by an element of the mapping class group. The lengths of the geodesics
in these free homotopy classes will a priori be different, so the length function that we
considered on the Teichmüller space is no longer well-defined on the moduli space. In
order to create a function on Mg,n(x), we will organise multi-curves on Sg,n by orbit
for the action of the mapping class group.

Definition 2. The mapping class group MCGg,n acts by composition on the set of
multi-curves on the base surface Sg,n. For a multi-curve Γ on the base surface Sg,n, we
set

Orb(Γ) = {h(Γ) , h ∈ MCGg,n}

to be the orbit of Γ for this action. We say that two multi-curves have the same
topological type if they belong in the same orbit.

Let us describe these topological types in two extreme cases, for a multi-curve with
only one component (i.e. one simple closed curve) and a pair of pants decomposition.

Proposition 3.7. The topological type of a simple closed curve β on Sg is entirely
determined by the topology of the surface Sg \ β obtained by cutting along it. More
precisely, there are exactly bg

2
c+ 1 orbits of simple curves on the compact surface Sg:

• the non-separating curve γ0, which cuts Sg into a surface of signature (g − 1, 2)
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(a) Non-separating curves in Orb(γ0). (b) Separating curves in Orb(γ1).

Figure 3.11: Simple closed curves on a genus 2 compact hyperbolic surface. They are
organised by topological type, i.e. by orbit for the action of the mapping class group.

• for 1 ≤ i ≤ bg
2
c, the i-th separating curve γi which separates Sg,n into two com-

ponents, of respective signatures (i, 1) and (g − i, 1).

In particular, when g = 2, there are two orbits, represented in Figure 3.11.

Elements of proof. Let β, β′ be two non-separating simple closed curves on Sg. Then,
the surfaces Sg \ β and Sg \ β′ both are of signature (g − 1, 2). By the classification of
surfaces, there is a homeomorphism h : Sg \ β → Sg \ β′. This allows us to construct a
homeomorphism h̃ : Sg → Sg sending β on β′, which imply that β and β′ belong in the
same orbit for the action of MCGg.

The proof for separating curves is the same.

Example 2. We saw in the proof of Proposition 3.5 that there are finite number of
topological types of pairs of pants decomposition of Sg, and they correspond to the iso-
morphism classes of 3-regular multi-graphs with 2g − 2 vertices and 3g − 3 edges. The
two different classes for g = 2 are represented in Figure 3.9.

It is then possible to define functions from Mg,n(x) to R, by summing over the
orbits of a multi-curve.

Definition 3. A function F : Mg,n(x) → R≥0 is called a geometric function if there
exists an integer k ≥ 1, a multi-curve Γ = (γ1, . . . , γk) on Sg,n and a function f : Rk → R
such that

∀X ∈Mg,n(x), F (X) = fΓ(X) :=
∑

Γ′∈Orb(Γ)

f(~̀X(Γ′)).

Though a fixed term of the sum in the previous definition only really makes sense
for an element (X,φ) of the Teichmüller space, the summation over the orbit makes it
invariant under the action of the mapping class group, and hence a well-defined function
on the moduli space Mg,n(x).
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Example 3. For 0 ≤ a ≤ b, the simple counting function defined for X ∈Mg by

N`,s
X (a, b) = #{primitive simple geodesics γ s.t. a ≤ `X(γ) ≤ b}

is not a geometric function, but it can be expressed as

N`,s
X (a, b) =

b g
2
c∑

i=0

N`,s,i
X (a, b)

where for each 0 ≤ i ≤ bg
2
c, N`,s,i

X (a, b) is the geometric function

N`,s,i
X (a, b) = #{primitive simple geodesics γ ∈ Orb(γi) s.t. a ≤ `X(γ) ≤ b}

=
∑

γ∈Orb(γi)

1[a,b](`X(γ)).

Note that, within this setting, the full counting function

N`
X(a, b) = #{geodesics γ s.t. a ≤ `X(γ) ≤ b}

cannot be expressed in a similar fashion, because it contains non-simple geodesics, which
are not multi-curves.

Example 4. The function counting the number of pairs of pants decompositions of total
boundary length smaller than L,

pX(L) := #{Γ pair of pants decomposition of X : `X(Γ) ≤ L},

can also be written as a sum of geometric functions, indexed by the topological types of
the pairs of pants decompositions.

3.2.1.4 The integration formula

Mirzakhani provided an expression for the integral of any geometric function as an
integral over a power of R≥0 [Mir07a]. In order to write the formula, we must set
notations to describe the surface obtained by cutting Sg,n along a multi-curve Γ.

Notation 2 (see Figure 3.12). Let Γ be a multi-curve on Sg,n. The cut surface Sg,n \Γ
can be written as the disjoint union

⊔q
i=1 Sgi,ni of its connected pieces, and the k curves

of Γ form 2k boundary components of the cut surface.
If we equip Sg,n with a hyperbolic metric such that the length of its boundary

components are x, then the lengths of the components of the multi-curve Γ form a
length vector y ∈ Rk>0. These lengths become new boundary lengths of the surface
Sg,n \ Γ. We can therefore consider that each component Sgi,ni has boundaries of fixed
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lengths, defined by a length vector (x(i),y(i)) ∈ Rni>0, made up of old and new lengths.
We then set

Vg,n(x; Γ,y) :=

q∏
i=1

Vgi,ni(x
(i),y(i)).

When n = 0, in order to simplify notations, we define

Vg(Γ,y) :=

q∏
i=1

Vgi,ni(y
(i)).

(a) V1,1(y1) V2,3(y1, y2, y2). (b) V0,5(y1, y1, y2, y2, y3) V0,3(y3, y4, y4).

Figure 3.12: Value of V3(Γ,y) for two examples of multi-curves on the base surface S3.

Mirzakhani’s integration formula can then be written as follows.

Theorem 3.8 ([Mir07a, Theorem 8.1]). Given a multi-curve Γ with k components and
a positive measurable function f : Rk → R≥0,∫

Mg,n(x)

fΓ(X) dVolWP
g,n,x(X) =

∫
Rk≥0

f(x)Vg,n(x; Γ,y) y1 · · · yk dy.

The formula proved in [Mir07a] has an additional factor 2−M(Γ) where M(Γ) is the
number of one-holed tori separated by Γ, because every surface of signature (1, 1) with
one boundary component of length x admits an involution isometry4. It does not appear
here thanks to our convention for the volume V1,1(x).

Example 5. Thanks to the integration formula and the geometric expression in Exam-
ple 3, we can write the expectation of the simple counting function N`,s

X (a, b) as

EWP
g

[
N`,s
X (a, b)

]
=

1

Vg

∫ b

a

Vg−1,2(x, x)x dx+
1

Vg

b g
2
c∑

i=1

∫ b

a

Vi,1(x)Vg−i,1(x)x dx.

In order to actually compute the expectation of N`,s
X (a, b), we see that we need to compute

Vg−1,2(x, x) and Vg′,1(x) for x ∈ R≥0 and g′ ≤ g.

Example 6. The expectation of the function pX(L) introduced in Example 4 can be
computed using Mirzakhani’s integration formula. The expression is very simple: con-
trarily to Example 5, all of the volumes that appear in the integral are volumes V0,3( · )
which are always equal to one.

4The involution corresponds to a rotation of angle π of the boundary geodesic or cusp, represented
in [FM12, Figure 3.8]. Note that some exceptional isometries also occur for (g, n) = (2, 0) or (1, 2) if
x1 = x2. This has no incidence in the formula because only surfaces with a boundary intervene in the
integration formula, and because the condition x1 = x2 is only verified on a set of measure 0.
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3.2.2 Mirzakhani’s topological recursion formula

Let g, n ∈ N0 such that 2g − 2 + n > 0. The aim of this section is to provide a method
to compute the Weil–Petersson volume Vg,n(x) for x ∈ Rn≥0.

3.2.2.1 Polynomial expression

Mirzakhani proved in [Mir07a, Theorem 6.1] the following result.

Theorem 3.9. The function x 7→ Vg,n(x) is a polynomial function that can be written
as

Vg,n(x) =
∑

|α|≤3g−3+n

cg,n(α)
n∏
j=1

x
2αj
j

22αj(2αj + 1)!
·

Interestingly, the coefficients cg,n(α) can be interpreted as intersection numbers
[Mir07b]. The choice of the normalisation by 22αj(2αj + 1)! is partly motivated by
this interpretation, but also simplifies the recursion formulas linking the coefficients.
Note that the polynomial Vg,n(x) is symmetric in the variables x, and therefore the
coefficient cg,n(α) is invariant by permutation of the multi-index α.

Example 7. We have already seen that V0,3(x) is the constant polynomial equal to 1.
Näätänen and Nakanishi proved in [NN98] that for all x ≥ 0,

V1,1(x) =
π2

12
+
x2

48
·

Elements of proof of Theorem 3.9. McShane’s identity [McS91] states that for any punc-
tured torus X (i.e. element of M1,1(0) =M1,1),∑

γ simple
closed geodesic

1

1 + exp(`X(γ))
=

1

2
·

We observe that there is only one topological type of simple essential closed curve on a
surface of signature (1, 1): one that cuts the surface into a pair of pants. Let γ be such
a curve on S1,1. The previous equation can be rewritten as:

∀X ∈M1,1, fγ(X) =
1

2

where f is the function x 7→ 1
1+exp(x)

. In order words, fγ is a constant geometric function
on the moduli spaceM1,1. On the one hand, since it is a geometric function, it can be
integrated thanks to Mirzakhani’s integration formula:∫

M1,1

fγ(X) dVolWP
1,1 (X) =

∫ +∞

0

xV0,3(x, x, 0) dx

1 + exp(x)
=
π2

12
·
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On the other hand, it is constant so∫
M1,1

fγ(X) dVolWP
1,1 (X) =

VolWP
1,1 (M1,1)

2
= V1,1.

And therefore V1,1 = π2/12.
McShane’s identity was generalised independently by Mirzakhani [Mir07a] and Tan,

Wong and Zhang [TWZ06]. For any (g, n) such that 2g − 2 + n > 0 and n 6= 0 and
any length vector x ∈ Rn≥0, she found a family of multi-curves Γ1, . . . ,ΓN on the base
surface Sg,n and functions f1,x, . . . , fN,x, such that:

∀X ∈Mg,n(x),
N∑
i=1

fΓi
i,x(X) = 1.

As a consequence,

VolWP
g,n (Mg,n(x)) =

N∑
i=1

∫
Mg,n(x)

fΓi
i,x(X) dVolWP

g,n,x(X).

These integrals are integrals of geometric functions, and can therefore be expressed using
Theorem 3.8. The expression will contain certain volume polynomials Vg′,n′(x

′) for g′,
n′ such that the Euler characteristic |χ′| = 2g′− 2 + n′ < |χ| = 2g− 2 + n, because the
surface Sg,n has been cut along a multi-curve. By induction on the quantity 2g− 2 +n,
we find that all the volumes Vg,n(x) are polynomials in x, and that their coefficients
satisfy a recursion formula.

3.2.2.2 Recursion formula

Whenever the number of boundary components n is different from 0, the volume polyno-
mial Vg,n(x), and therefore its coefficients cg,n(α), can be computed using a topological
recursion formula proved by Mirzakhani [Mir07a].

More precisely, the coefficients of the volume Vg,n(x) can be expressed as a linear
combination of the coefficients of certain volumes Vg′,n′(x), corresponding to Euler char-
acteristics |χ′| = 2g′ − 2 + n′ strictly smaller than |χ| = 2g − 2 + n. This ultimately
allows the computation of all the volume polynomials Vg,n(x) (with non-zero n) starting
only with the base cases for which |χ| = 1, the pair of pants and the one-holed torus,
for which the volumes are known (see Example 7).

In order to state the recursion formula proved by Mirzakhani in [Mir07a], and the
numerous terms it contains, let us first explain its topological interpretation. Let us
consider a bordered hyperbolic surface X ∈ Mg,n(x). Our objective is to ‘construct’
X using smaller pieces. One way to do so is the following: we focus on one boundary
component of X, the first one for instance. We will try to remove from the surface X
a pair of pants containing the boundary component β1. Since the Euler characteristic
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of the pair of pants is −1, the Euler characteristic obtained after removing the pair of
pants will decrease in absolute value.

There are many topological types of embedded pairs of pants bounded by β1. They
can be arranged in three categories.

(A) Pairs of pants with two boundary components from ∂X, the component β1 and βj
for a j ∈ {2, . . . , n}. Then, the signature of the surface obtained when removing
this pair of pants is (g, n− 1), with n− 1 > 0.

(B) Non-separating pairs of pants, that is to say a pair of pants delimited by the
boundary component β1 and two inner curves, and such that the surface obtained
when removing the pair of pants is still connected (and therefore of signature
equal to (g − 1, n+ 1)).

(C) Separating pair of pants, that is to say a pair of pants delimited by the boundary
component β1 and two inner curves, but which separates the surface into two
connected components. The topological situation can be entirely described by the
genus g′ of one of the components (the other genus being g− g′), and a partition
(I, J) of the boundary components {2, . . . , n} ofX. Note that the only cases which
will appear are those for which 2g′−2+ |I|+1 > 0 and 2(g−g′)−2+ |J |+1 > 0.
Let Ig,n denote the set of all these topological possibilities.

The coefficients of the volume Vg,n(x) can be expressed as a linear combination of
the coefficients of all the embedded surfaces we encountered in this enumeration.



70 CHAPTER 3. THE WEIL-PETERSSON PROBABILISTIC MODEL

Theorem 3.10 ([Mir07a]). The coefficients of the volume polynomial Vg,n(x) can be
written as a sum of three contribution, corresponding to the cases (A-C):

cg,n(α) =
n∑
j=2

A(j)
g,n(α) + Bg,n(α) +

∑
ι∈Ig,n

C(ι)
g,n(α). (3.2)

Each of these terms is a combination of coefficients of the volumes of the corresponding
embedded surfaces:

A(j)
g,n(α) = 8 (2αj + 1)

+∞∑
i=0

ui cg,n−1(i+ α1 + αj − 1, α2, . . . , α̂j, . . . , αn) (3.3)

Bg,n(α) = 16
+∞∑
i=0

∑
k1+k2=i+α1−2

ui cg−1,n+1(k1, k2, α2, . . . , αn) (3.4)

C(ι)
g,n(α) = 16

+∞∑
i=0

∑
k1+k2=i+α1−2

ui cg′,|I|+1(k1, αI) cg−g′,|J |+1(k2, αJ), (3.5)

where for any i ≥ 0,

ui =

{
ζ(2i)(1− 21−2i) when i > 0
1
2

when i = 0.

Note that all the sums are finite because the coefficient cg,n(β) is equal to zero as
soon as |β| > 3g− 3 + n, and therefore the non-zero terms satisfy i ≤ 3g− 1 + n− |α|.

Example 8. The coefficients that intervene when computing Vg,n(x) for each (g, n)
such that |χ| ≤ 3 are represented by the arrows in Figure 3.13.

Figure 3.13: Dependency of the coefficients of the volume polynomials Vg,n(x) when
|χ| = 2g − 2 + n ≤ 3. Note that all the coefficients for which n 6= 0 can therefore be
computed thanks to the base coefficients for which |χ| = 1.
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3.2.2.3 The sequence (ui)i and first estimates

In order to use the recursion formula, we need some information about the sequence
(ui)i that appears in Theorem 3.10.

Lemma 3.11 ([Mir13, Lemma 3.1]). The sequence (ui)i is increasing, converges to 1
as i approaches infinity, and there exists a constant C > 0 such that

∀i, ui+1 − ui ≤
C

4i
· (3.6)

We can deduce from the monotonicity of the sequence (ui)i the fact that the coeffi-
cients cg,n(α) are decreasing functions of α in the following sense.

Lemma 3.12. We define the following partial order on multi-indices in Nn:

α ≤ α̃ ⇔ ∀j ∈ {1, . . . , n}, αj ≤ α̃j.

Then, the coefficients cg,n(α) of the volume polynomial Vg,n(x) decrease with the multi-
index α. In particular,

∀α, 0 ≤ cg,n(α) ≤ Vg,n. (3.7)

Proof. By symmetry of the coefficients, we can reduce the problem to proving that for
any multi-indices α and α̃ = (α̃1, α2, . . . , αn) such that α̃1 ≥ α1, cg,n(α̃) ≤ cg,n(α). More
precisely, we will show that every single term in equation (3.2) is smaller for the index
α̃ than it is for α. The method being the same for every contribution, so we only detail
the proof of the fact that Bg,n(α̃) ≤ Bg,n(α). By equation (3.4),

Bg,n(α)− Bg,n(α̃) = 16
∑
k1,k2

(uk1+k2+2−α1 − uk1+k2+2−α̃1) cg−1,n+1(k1, k2, α2, . . . , αn)

with the convention ui = 0 when i < 0. Then, the difference uk1+k2+2−α1−uk1+k2+2−α̃1 is
always positive because the sequence (ui)i∈Z is increasing, so the sum Bg,n(α)−Bg,n(α̃)
is too.

Due to the expression of Vg,n(x) in terms of the coefficients cg,n(α), Lemma 3.12
directly implies the following inequality on the volume polynomials.

Corollary 3.13. For any length vector x = (x1, . . . , xn) ∈ Rn≥0,

x1 . . . xnVg,n(x1, . . . , xn) ≤ 2nVg,n

n∏
j=1

sinh
(xj

2

)
≤ Vg,n exp

(
x1 + . . .+ xn

2

)
. (3.8)

Proof. By definition of the coefficients cg,n(α),

x1 . . . xnVg,n(x) =
∑

|α|≤3g−3+n

cg,n(α)
n∏
j=1

x
2αj+1
j

22αj(2αj + 1)!

≤ Vg,n
∑
α∈Nn

n∏
j=1

x
2αj+1
j

22αj(2αj + 1)!
= Vg,n

n∏
j=1

2 sinh
(xj

2

)
which leads to the conclusion because 2 sinh(x) ≤ exp(x).
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3.2.3 High-genus estimates and applications to geometry

In this section, we will:

• provide the last tool we need to study random hyperbolic surfaces: estimates on
the Weil–Petersson volumes as g → +∞

• describe a methodology to prove geometric properties true for typical surfaces,
and give a few examples.

3.2.3.1 Estimates of ratios of Weil–Petersson volumes

Let us present known estimates on ratios of Weil–Petersson volumes in the large-genus
limit. These properties have been established in [Mir13] using several recursion formulas
for Weil–Petersson volume [Mir07a, DN09, LX09].

Same Euler characteristic Since two surfaces with the same Euler characteristic
are at the same height in the recursion formula, one could expect that the volumes Vg,n
and Vg−1,n+2 are of similar sizes. This is indeed the case: by [Mir13, Theorem 3.5], for
all n ≥ 1, there is a constant Cn > 0 such that for any g ∈ N0 satisfying 2g− 2 +n > 0,∣∣∣∣Vg−1,n+2

Vg,n
− 1

∣∣∣∣ ≤ Cn
g + 1

· (3.9)

Note that this result has been extended to cases where n = n(g) under the assumption
that n(g) = o(

√
g) in [MZ15, Lemma 5.1].

Actually, one might perhaps expect that all of the g + 1 volumes

Vg,n, Vg−1,n+2, Vg−2,n+4, . . . , V1,n+2g−2, V0,n+2g

are of similar size. While we can compare Vg,n to Vg−k,n+2k for a fixed k by iterating
equation (3.9), the bound becomes bad for a large k. By [Mir13, equation (3.20)], the
first item of this list dominates all of the others: there exists a constant c > 0 such that
for any g, n ∈ N0 satisfying 2g − 2 + n > 0,

∀k ≤ g, Vg−k,n+2k ≤ c Vg,n. (3.10)

However, there is no similar bound the other way: as a consequence of the asymptotic
expansion of Vg,n for fixed g and large n proved in [MZ00], we have that

V0,n+2g = On
(
V1,n+2g−2√

g

)
.
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Cutting into two smaller surfaces Similarly, since we can cut surfaces of signature
(g, n) into two surfaces of respective signatures (g1, n1+1) and (g2, n2+1) with g1+g2 = g
and n1 + n2 = n, one could expect the product Vg1,n1+1 × Vg2,n2+1 to be of similar size
as Vg,n. Actually, these quantities are much smaller: by [Mir13, Lemma 3.3], for any
n ≥ 0, there exists a constant Cn > 0 such that for all g satisfying 2g − 2 + n > 0,∑

g1+g2=g
n1+n2=n
2gi+ni>1

Vg1,n1+1Vg2,n2+1 ≤ Cn
Vg,n
g + 1

· (3.11)

As we will see in the applications in Section 3.2.3.2, the presence of this decay in 1/(g+1)
is linked to the fact that typical surfaces of large genus are very well-connected, and
therefore quite difficult to cut into smaller pieces.

Adding a cusp We can furthermore compare Vg,n and Vg,n+1 using [Mir13, Lemma
3.2]: for any g, n ∈ N0 such that 2g − 2 + n > 0,

1

12

(
1− π2

10

)
<

(2g − 2 + n)Vg,n
Vg,n+1

<
cosh(π)

π2
· (3.12)

The fact that Vg,n+1 grows roughly like (2g−2+n)Vg,n can be interpreted the following
way: in order to sample a surface of signature (g, n + 1), we can start by sampling a
surface of signature (g, n). We then need to decide where to add a cusp, by picking a
point on the surface, of area proportional to 2g − 2 + n.

3.2.3.2 Geometry of typical compact hyperbolic surfaces

We are now (finally!) equipped with all of the tools necessary to study typical surfaces.

As a general rule, geometric estimates on typical compact hyperbolic surfaces are
always established following the same methodology:

• we express the question in terms of expectations of geometric functions

• we use Mirzakhani’s integration formula to express the expectations of these ge-
ometric functions

• we use estimates, such as Corollary 3.13 and the high-genus estimates from Sec-
tion 3.2.3.1, to conclude.

All of the results proven in [Mir13, Section 4], [MP19], and the two main geometric
results from this thesis (Theorem 4.1 and 4.8) are proved using the same method. Let us
prove the following proposition, adapted from [Mir13, Section 4], in order to illustrate
the method.
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Proposition 3.14. For all a ∈ (0, 1) and any genus g ≥ 2,

PWP
g (Sys(X) ≤ a) = O

(
a2
)

(3.13)

PWP
g (SimSepSys(X) ≤ a log g) = O

(
1

g1−a

)
(3.14)

where Sys(X) denotes the length of the shortest closed geodesic on X (which is al-
ways simple), and SimSepSys(X) the length of the shortest simple closed geodesic that
separates the surface X.

In other words, typically,

Sys(X) ≥ 1

log g
and SimSepSys(X) ≥ a log g.

We observe that the length of the simple separating systole seems to be much longer
than the length of the systole. This is an indicator of the fact that typical surfaces are
very well-connected: they might have short geodesics, but cutting along them does not
disconnect the surface. The reason behind this scale-difference is the additional factor
of 1/g in the estimate (3.11) compared to (3.9), as we will see in the proof.

Proof of Proposition 3.14. The first step of the proof is to express the probabilities in
terms of the geometric functions introduced in Example 3. We observe that:

PWP
g (Sys(X) ≤ a) = PWP

g

(
∃i ≥ 0 : N`,s,i

X (0, a) ≥ 1
)

PWP
g (SimSepSys(X) ≤ a log g) = PWP

g

(
∃i > 0 : N`,s,i

X (0, a log g) ≥ 1
)
.

We use Markov’s inequality in order to replace these probabilities by expectations :

PWP
g (Sys(X) ≤ a) ≤

b g
2
c∑

i=0

EWP
g

[
N`,s,i
X (0, a)

]

PWP
g (SimSepSys(X) ≤ a log g) ≤

b g
2
c∑

i=1

EWP
g

[
N`,s,i
X (0, a log g)

]
.

We now need to estimate these expectations, which is the aim of the following lemma.

Lemma 3.15. For any integer g ≥ 2 and any real numbers 0 ≤ a ≤ b,

EWP
g

[
N`,s,0
X (a, b)

]
= O

(∫ b

a

sinh2
(
x
2

)
x

dx

)
= O

(
eb
)

b g
2
c∑

i=1

EWP
g

[
N`,s,i
X (a, b)

]
= O

(
1

g

∫ b

a

sinh2
(
x
2

)
x

dx

)
= O

(
eb

g

)
.
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Proof. We have expressed these expectations using Mirzakhani’s integration formula in
Example 5:

EWP
g

[
N`,s,0
X (a, b)

]
=

1

Vg

∫ b

a

Vg−1,2(x, x)x dx

∀i > 0,EWP
g

[
N`,s,i
X (a, b)

]
=

1

Vg

∫ b

a

Vi,1(x)Vg−i,1(x)x dx.

By Corollary 3.13, for all x > 0 and i > 0,

Vg−1,2(x, x) ≤
4 sinh2

(
x
2

)
x2

Vg−1,2

Vi,1(x)Vg−i,1(x) ≤
4 sinh2

(
x
2

)
x2

Vi,1Vg−i,1.

We conclude using equations (3.9) and (3.11).

As a consequence, on the one hand,

PWP
g (Sys(X) ≤ a) = O

(∫ a

0

sinh2
(
x
2

)
x

dx

)
= O

(∫ a

0

x dx

)
= O

(
a2
)
.

because there exists a constant C such that for all x ∈ [0, 1], sinh2
(
x
2

)
≤ Cx2. On the

other hand,

PWP
g (SimSepSys(X) ≤ a log g) = O

(
ea log g

g

)
= O

(
1

g1−a

)
.

This proof is an example of a situation where the first step of the method, namely
relating the event to expectations of geometric functions, is straightforward. In general,
it can be quite hard to do so. Here are a few examples of difficulties, and the way they
are addressed in literature.

• Not every quantity we are interested in is related to lengths of multi-curves. For
instance, how is it possible to study the diameter with this method? Or the
lengths of non-simple curves?

– In [Mir13, Section 4], many of the estimates are obtained from inequalities
between different quantities. For instance, Mirzakhani proved that, typically,
diam(X) ≤ 40 log g thanks to the bound

diam(X) ≤ Sys(X) +
2

h(X)
log

 π(2g − 2)

cosh
(

Sys(X)
2

)
− 1


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from [Bro92], together with bounds on Sys(X) and the Cheeger constant
h(X) [Mir13, Theorem 4.10]. This is a good estimate: we know that the
diameter is always at least logarithmic in the genus. However, the value
40 is (a priori) not optimal at all. Improving the estimate would require a
betterment of the bound on the Cheeger constant or a new approach.

– In Section 4.2, we adapt the notion of ‘tangle-free’ graphs to surfaces. We
define the notion in terms of geometric functions, so that its probability is
easy to study (see Theorem 4.8). We then obtain information on other quan-
tities, harder to express in terms of geometric functions (such as the length
of the shortest non-simple geodesic or the width of the collar surrounding a
closed geodesic) using tools from hyperbolic geometry.

• For any integer-valued random variable F : Mg → N0, such as the counting

function N`,s
X (a, b) or N`,s,i

X (a, b), Markov’s inequality

PWP
g (F (X) ≥ 1) ≤ EWP

g [F (X)]

can only give us upper bounds on probabilities. In order to prove lower bounds,
we need to use other tricks, such as writing

EWP
g [F (X)] =

∑
k≥1

k PWP
g (F (X) = k) =

∑
k≥1

PWP
g (F (X) ≥ k) . (3.15)

This is the method that Mirzakhani used to prove [Mir13, Theorem 4.2], which
states that there exists a constant C > 0 such that

∀a ∈ (0, 1),PWP
g (Sys(X) ≤ a) ≥ Ca2.

• Can we be more precise and compute asymptotics as g → +∞, rather than
upper and lower bounds? This was achieved in [MP19], where Mirzakhani and
Petri proved that the length-counting function N`

X(a, b) converges to a Poisson-
law. They used the method of factorial moments: we deduce the convergence in
distribution of a sequence of random variables (Fi)i from the convergence of its
factorial moments E[Fi(Fi − 1) . . . (Fi − r + 1)] (see [Bol01, Theorem 1.23]).

3.2.3.3 Some generalisations

In this thesis, we will need two generalisations of equation (3.11) that will be useful in
the sequel, but can be skipped at first read. The first generalisation is for cutting the
surface into more than two pieces.

Lemma 3.16. For any k ≥ 1, n ≥ 0, there exists a constant Cn,k > 0 such that, for
all g, all integers n1, . . . , nk such that n1 + . . .+ nk = n,∑

g1,...,gk≥0
g1+...+gk=g

k∏
i=1

Vgi,ni ≤ Cn,k
Vg,n
g3(k−1)

·
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It is obtained by a straightforward iteration of equation (3.11). The second gener-
alisation is a new version of equation (3.11) with an additional power of the genus in
the sum.

Lemma 3.17. Let N1, N2 ≥ 0, n ≥ 0. There exists a constant Cn,N1,N2 > 0 such that
for any g satisfying 2g − 2 + n > 0, and any n1, n2 such that n1 + n2 = n,∑

g1+g2=g
2gi+ni>Ni+1

Vg1,n1+1Vg2,n2+1

(g1 + 1)N1(g2 + 1)N2
≤ Cn,N1,N2

Vg,n
(g + 1)N1+N2+1

· (3.16)

We insist on the fact that the sum is only taken over the set of indices such that
2gi + ni > Ni + 1. As we will see in the following proof, this is necessary and the result
is false if we add the terms such that 1 < 2gi + ni ≤ Ni + 1.

Proof. The proof is an induction on the integer N := N1 + N2, the case N = 0 being
equation (3.11).

Let N1, N2 ≥ 0 such that N > 0. We assume the property at the rank N − 1. By
symmetry, we can assume that N1 ≥ N2, and in particular N1 > 0. Then, for any n1,
n2 such that n1 + n2 = n, the left hand side of equation (3.16) restricted to the terms
where g1 > 0 (which only exist if g > 0) satisfies

∑
g1+g2=g

2gi+ni>Ni+1
g1>0

Vg1,n1+1Vg2,n2+1

(g1 + 1)N1(g2 + 1)N2
= On1

( ∑
g′1+g2=g−1
2g′1+n′1>N1

2g2+n2>N2+1

Vg′1,n′1+1Vg2,n2+1

(g1 + 1)N1−1(g2 + 1)N2

)

since Vg1,n1+1/(g1 + 1) = On1(Vg1−1,n1+2) by equations (3.9) and (3.12), and by the
change of indices g′1 = g1 − 1, n′1 = n1 + 1. By the induction hypothesis, this sum is

On+1,N1−1,N2

(
Vg−1,n+1

gN

)
= On,N1,N2

(
Vg,n

(g + 1)N+1

)
by equations equations (3.9) and (3.12) again. As a consequence, we are left to bound
the term for which g1 = 0. If such a term is present in the sum, then the integer
n1 = 2g1 + n1 satisfies n1 > N1 + 1, and hence n− n2 − 1 ≥ N1 + 1. Then, the term of
the sum is

V0,n1+1Vg,n2+1

(0 + 1)N1(g + 1)N2
= On

(
Vg,n

(g + 1)N2+n−n2−1

)
= On

(
Vg,n

(g + 1)N+1

)
by equation (3.12) applied n− n2 − 1 times.

3.3 High-genus asymptotic expansion

The contents from this section will be presented in a new version of [AM20].
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Mirzakhani and Zograf provided in [MZ15] an asymptotic expansion of the values
at zero Vg,n = Vg,n(0) of the Weil–Petersson volume polynomials for large genus g and
fixed n:

Vg,n = C
(2g − 3 + n)!(4π2)2g−3+n

√
g

(
1 +

c
(1)
n

g
+ · · ·+ c

(N)
n

gN
+On,N

(
1

gN+1

))
.

The form of this expansion had been conjectured by Zograf in [Zog08] following numer-
ical experiments. The value of the universal constant C is unknown to this day; the
data collected by Zograf seem to suggest that C = 1/

√
π.

The best known approximation of Vg,n(x) for general x is the following, proved by
Mirzakhani and Petri [MP19, Proposition 3.1]: for any x = (x1, . . . , xn) ∈ Rn,

Vg,n(x)

Vg,n
=

n∏
j=1

sinhc
(xj

2

)
+On

(
exp
(
x1+...+xn

2

)
g + 1

)
(3.17)

where sinhc is the function defined by

sinhc(x) =

{
sinh(x)
x

if x 6= 0

1 if x = 0.

This first-order approximation plays an essential part in the proof of the convergence
of the counting function N`

X(a, b) to a Poisson-law as g → +∞ [Mir13], and the two
proofs of the fact that λ1 ≥ 3

16
− ε typically [WX21, LW21].

In this section, we provide an asymptotic expansion in decreasing powers of g of the
volume Vg,n(x) for any x.

Theorem 3.18. For any n ∈ N, g ∈ N0, such that 2g− 2 +n > 0, there exists a family
of polynomial functions (P

(N,ε)
g,n )N≥0,ε∈{−1,0,1}n of n variables, such that for all N ∈ N0

and all x ∈ Rn≥0,

x1 . . . xnVg,n(x)

Vg,n
=

∑
ε∈{−1,0,1}n

P (N,ε)
g,n (x) exp

(ε · x
2

)
+ON,n

(
〈x〉3N+2

(g + 1)N+1
exp

(
x1 + . . .+ xn

2

))
. (3.18)

Furthermore, for all N , ε ∈ {−1, 0, 1}n, the degree of P
(N,ε)
g,n is ON (1) and its coefficients

are ON,n (1).

This expansion was encountered in an ongoing project in collaboration with Nalini
Anantharaman, aiming to prove that λ1 ≥ 1

4
− ε typically. We explain the key role this

expansion plays in this important conjecture in Section 6.2.
The proof does not provide an expression of the coefficients, and they are not

uniquely defined. However, we provide an explicit expression for a second-order ap-
proximation.
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Theorem 3.19. For any n ∈ N, g ∈ N0, such that 2g − 2 + n > 0, and any x ∈ Rn≥0,

Vg,n(x)

Vg,n
= f (1)

g,n(x)
n∏
i=1

sinhc
(xi

2

)
+On

(
〈x〉3 exp

(
x1+...+xn

2

)
(g + 1)2

)

where f
(1)
g,n : Rn → R is the function defined by:

f (1)
g,n(x) = 1 + 8

Vg−1,n+1

Vg,n

n∑
i=1

(
−x

2
i

16
− 2 +

cosh
(
xi
2

)
+ 1

sinhc
(
xi
2

) )
1g≥1

+ 4
Vg,n−1

Vg,n

∑
1≤i<j≤n

(
2−

cosh
(
xi
2

)
cosh

(xj
2

)
+ 1

sinhc
(
xi
2

)
sinhc

(xj
2

) )1n≥2.

This second-order estimate could be useful to improve bounds on the spectral gap
of typical surfaces, as explained in Section 6.2.2.

Remark. Using Theorem 1.4 of Mirzakhani and Zograf [MZ15], we have that for g ≥ 1,

Vg,n−1

Vg,n
=

1

8π2g
+On

(
1

g2

)
Vg−1,n+1

Vg,n
=
Vg−1,n+1

Vg,n−1

Vg,n−1

Vg,n
=

1

8π2g
+On

(
1

g2

)

and therefore the previous result still holds if we substitute f
(1)
g,n by

1 +
1

π2g

n∑
i=1

[
−x

2
i

16
− 2 +

cosh
(
xi
2

)
+ 1

sinhc
(
xi
2

) +
∑
j 6=i

(
1

2
−

cosh
(
xi
2

)
cosh

(xj
2

)
+ 1

4 sinhc
(
xi
2

)
sinhc

(xj
2

) )]. (3.19)

A similar expansion at arbitrarily high precision, such that all of the coefficients are of
the form

cn,k
gk

, can be deduced from [MZ15, Theorem 4.1, Lemma 4.7]. The expansion
that we prove here is simpler, because we only focus on the behaviour in terms of x of
the polynomial function x 7→ Vg,n(x), while the authors of [MZ15] are focused mainly
on the dependency on g. Notably, the second-order approximation equation (3.19) is
new and does not directly follows from the method of [MZ15].

Example 9. For n = 1, we obtain that for any g ≥ 1,

Vg,1(x)

Vg,1
=

[
1−

(
x2

2
+ 16

)
Vg−1,2

Vg,1

]
sinhc

(x
2

)
+ 8

Vg−1,2

Vg,1

(
cosh

(x
2

)
+ 1
)

+O
(
〈x〉3ex2
g2

)
= sinhc

(x
2

)
+

1

π2g

[
−
(
x2

16
+ 2

)
sinhc

(x
2

)
+ cosh

(x
2

)
+ 1

]
+O

(
〈x〉3ex2
g2

)
.
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3.3.1 The leading term

Let us first start this section by a detailed proof of an estimate similar to the Mirzakhani–
Petri first-term estimate, equation (3.17). This will allow us to present a few ideas that
will be used in the general case.

More precisely, we prove the following.

Proposition 3.20. For any n ∈ N, g ∈ N0, such that 2g − 2 + n > 0, and any length
vector x ∈ Rn≥0,

Vg,n(x)

Vg,n
=

n∏
j=1

sinhc
(xj

2

)
+On

(
|x| exp

(
x1+...+xn

2

)
g + 1

)
.

3.3.1.1 The coefficient estimate

Proposition 3.20 comes as a consequence of the expression of the volume polynomials,

Vg,n(x) =
∑
α∈Nn0

cg,n(α)
n∏
j=1

x
2αj
j

22αj(2αj + 1)!

together with the following first-order estimate of the coefficients (cg,n(α))α.

Lemma 3.21. For any n ∈ N, g ∈ N0, such that 2g − 2 + n > 0, and any multi-index
α ∈ Nn0 ,

cg,n(α)

Vg,n
= 1 +On

(
|α|2

g + 1

)
.

Remark. We insist on the fact that this estimate is true for any α and not only for
multi-indices α such that |α| ≤ 3g− 3 + n. Indeed, if |α| > 3g− 3 + n, then the bound

is trivial, because cg,n(α) = 0 and |α|2
g+1
� 1.

Let us first prove that Lemma 3.21 implies Proposition 3.20.

Proof. Using the expression of sinhc as a power series, we can write

Vg,n(x)− Vg,n
n∏
j=1

sinhc
(xj

2

)
=
∑
α∈Nn

(cg,n(α)− Vg,n)
n∏
j=1

x
2αj
j

22αj(2αj + 1)!
·

As a consequence, by the triangle inequality and Lemma 3.21,∣∣∣∣∣Vg,n(x)− Vg,n
n∏
j=1

sinhc
(xj

2

)∣∣∣∣∣ ≤ Cn
Vg,n
g + 1

∑
α∈Nn
|α|2∞

n∏
j=1

x
2αj
j

22αj(2αj + 1)!
· (3.20)

We cut the sum over α in equation (3.20) depending on the index j for which |α|∞ = αj.
Since α2

j ≤ (2αj + 1)(2αj)/4,

+∞∑
αj=1

α2
j x

2αj
j

22αj(2αj + 1)!
≤

+∞∑
k=0

x2k+2
j

22k(2k + 1)!
= 2xj sinh

(xj
2

)
≤ |x| exp

(xj
2

)
.
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Also, for any i,
+∞∑
αi=0

x2αi
i

22αi(2αi + 1)!
≤

+∞∑
k=0

xki
2kk!

≤ exp
(xi

2

)
.

This allows us to conclude.

3.3.1.2 Estimate of the discrete derivative

Lemma 3.21 states that the coefficients cg,n(α) are almost constant, equal to the value
Vg,n = cg,n(0). We will prove this by estimating the discrete derivatives of the coeffi-
cients.

Notation 3. Let n ≥ 1 be an integer. For any i ∈ {1, . . . , n}, we set δi to be the discrete
derivative with respect to the i-th coordinate, defined for a function v : Nn → R by:

∀α ∈ Nn, δiv(α) := v(α)− v(α1, . . . , αi + 1, . . . , αn).

The technical step to prove Lemma 3.21 is the following discrete derivative estimate.

Lemma 3.22. For any n ∈ N, g ∈ N0, such that 2g − 2 + n > 0, and any multi-index
α ∈ Nn,

δ1cg,n(α) = On
(
〈α〉
g + 1

)
.

Proof. The result is trivially true when 2g− 2 + n = 1, so we can assume that it is not
the case and apply Mirzakhani’s topological recursion formula, Theorem 3.10.

δ1cg,n(α) =
n∑
j=2

δ1A(j)
g,n(α) + δ1Bg,n(α) +

∑
ι∈Ig,n

δ1C(ι)
g,n(α).

We prove that each of these three term is On (〈α〉Vg,n/(g + 1)) separately thanks to
their respective expressions (equations (3.3) to (3.5)).

Let us begin by the first sum. Let j ≥ 2. We write equation (3.3) for A(j)
g,n(α) and

A(j)
g,n(α1 + 1, α2, . . . , αn), isolating the term i = 0 in the first sum and using a change of

index on the sum over i ≥ 1. We obtain

δ1A(j)
g,n(α) = 4 (2αj + 1) cg,n−1(α1 + αj − 1, α2, . . . , α̂j, . . . , αn)

+ 8 (2αj + 1)
+∞∑
i=0

(ui+1 − ui) cg,n−1(i+ α1 + αj, α2, . . . , α̂j, . . . , αn).

But we know by Lemma 3.12 that for any multi-index β ∈ Nn−1,

0 ≤ cg,n−1(β) ≤ Vg,n−1.
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Then,

0 ≤ δ1A(j)
g,n(α) ≤ 8(2αj + 1)Vg,n−1 = On

(
〈αj〉Vg,n

g

)
because

∑+∞
i=0 (ui+1 − ui) = limu − u0 = 1 − 1

2
= 1

2
(see Lemma 3.11), and by equa-

tion (3.12). Since there are n− 1 = On (1) possible values for j,

n∑
j=2

δ1A(j)
g,n(α) = On

(
〈α〉Vg,n
g

)
. (3.21)

We now look at the non-separating term δ1Bg,n(α). Note that this term only appears
whenever g ≥ 1. By the same method, this time applied to equation (3.4),

δ1Bg,n(α) = 8
∑

k1+k2=α1−2

cg−1,n+1(k1, k2, α2, . . . , αn)

+ 16
+∞∑
i=0

∑
k1+k2=i+α1−1

(ui+1 − ui) cg−1,n+1(k1, k2, α2, . . . , αn)·

By Lemma 3.12, for any multi-index β ∈ Nn+1,

0 ≤ cg−1,n+1(β) ≤ Vg−1,n+1 = On
(
Vg,n
g

)
thanks to equations (3.9) and (3.12). Then,

δ1Bg,n(α) = On

(
α1
Vg,n
g

+
+∞∑
i=0

(i+ α1)(ui+1 − ui)
Vg,n
g

)
= On

(
〈α1〉Vg,n
g + 1

)
(3.22)

because 1
g
≤ 2

g+1
, and the series

∑
i(ui+1 − ui) and

∑
i i(ui+1 − ui) converge.

Finally, for any configuration ι = (g′, I, J) ∈ Ig,n,

δ1C(ι)
g,n(α) = 8

∑
k1+k2=α1−2

cg′,|I|+1(k1, αI) cg−g′,|J |+1(k2, αJ)

+ 16
+∞∑
i=0

∑
k1+k2=i+α1−1

(ui+1 − ui) cg′,|I|+1(k1, αI) cg−g′,|J |+1(k2, αJ)

=On
(
〈α1〉Vg′,|I|+1Vg−g′,|J |+1

)
.

As a consequence,

∑
ι∈Ig,n

δ1C(ι)
g,n = On

(
〈α1〉

∑
g1+g2=g

n1+n2=n−1
2gi+ni>1

Vg1,n1+1Vg2,n2+1

)
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and therefore ∑
ι∈Ig,n

δ1C(ι)
g,n = On

(
〈α1〉Vg,n−1

g + 1

)
= On

(
〈α1〉Vg,n
(g + 1)2

)
(3.23)

by equations (3.11) and (3.12). The conclusion follows from adding equations (3.21)
to (3.23).

3.3.1.3 Discrete integration

In order to go from the estimate of the discrete derivative to an estimate on the actual
coefficients, we use the following discrete integration lemma.

Notation 4. For an integer i, we set

0i := 0, . . . , 0︸ ︷︷ ︸
i zeroes

.

Lemma 3.23. Let n ≥ 1 be an integer. For any v : Nn → R,

v(α) = v(0n)−
n∑
i=1

αi−1∑
k=0

δiv(0i−1, k, αi+1, . . . , αn).

Proof. We observe that for any index i, the sum over k is a telescopic sum:

Si :=

αi−1∑
k=0

δiv(0i−1, k, αi+1, . . . , αn)

=

αi−1∑
k=0

[
v(0i−1, k, αi+1, . . . , αn)− v(0i−1, k + 1, αi+1, . . . , αn)

]
= v(0i, αi+1, . . . , αn)− v(0i−1, αi, αi+1, . . . , αn).

As a consequence,
∑n

i=1 Si = v(0n)− v(α), which what was claimed.

Lemma 3.21 directly follows from this formula and the estimate on the discrete
derivatives, Lemma 3.22.

3.3.2 The second term

Let us now compute the second term of the asymptotic expansion of Vg,n(x) in powers of
1/(g+1), prove Theorem 3.19. We start by estimating the volume coefficients (cg,n(α))α
up to errors of size Vg,n/(g + 1)2.

Proposition 3.24. For any n ∈ N, g ∈ N0, such that 2g − 2 + n > 0,

∀α ∈ Nn0 , cg,n(α) = φ(1)
g,n(α) +On

(
|α|4Vg,n
(g + 1)2

)
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where φ
(1)
g,n : Nn0 → R is the function defined by:

φ(1)
g,n(α) = Vg,n + 8Vg−1,n+1

n∑
i=1

(
−p2(αi)

4
− 2 + p1(αi) + 1αi=0

)
+ 4Vg,n−1

∑
1≤i<j≤n

(
2− p1(αi)p1(αj)− 1αi=αj=0

)
and p1(X) := 2X + 1, p2(X) := (2X + 1)(2X).

3.3.2.1 Estimate of the discrete derivative

The expansion of (cg,n(α))α∈Nn0 is obtained thanks to the following estimate on the
discrete derivatives δ1cg,n(α) obtained using Mirzakhani’s integration formula.

Lemma 3.25. For any n ∈ N, g ∈ N0, such that 2g − 2 + n > 0,

∀α ∈ Nn0 , δ1cg,n(α) = ψ(1)
g,n(α) +On

(
〈α〉3 Vg,n

(g + 1)2

)
where ψg,n : Nn0 → R is the function defined by:

ψg,n(α) = 4(4α1 − 1 + 21α1=0)Vg−1,n+11g≥1 + 4
n∑
j=2

(4αj + 2− 1α1=αj=0)Vg,n−11n≥2.

Proof. We follow the same proof as for Lemma 3.22, this time replacing all the coeffi-
cients appearing in Mirzakhani’s recursion formula by their first order approximation.
Indeed, by Theorem 3.10,

δ1cg,n(α) =
n∑
j=2

δ1A(j)
g,n(α) + δ1Bg,n(α) +

∑
ι∈Ig,n

δ1C(ι)
g,n(α).

We estimate each term up to errors of size Vg,n/(g + 1)2.
We notice that the first term is zero if n = 1. Let us assume otherwise, and take

j ∈ {2, . . . , n}. As before, we can write

δ1A(j)
g,n(α) = 4(2αj + 1) cg,n−1(α1 + αj − 1, α2, . . . , α̂j, . . . , αn)

+ 8(2αj + 1)
+∞∑
i=0

(ui+1 − ui) cg,n−1(i+ α1 + αj, α2, . . . , α̂j, . . . , αn)

=: T1 + T2.

• Term T1:

– If α1 = αj = 0, then α1 + αj − 1 < 0 and therefore T1 = 0.
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– Otherwise, by Lemma 3.21 applied to the coefficient appearing in T1,

T1 = 4(2αj + 1)Vg,n−1 +On
(

(2αj + 1)|α|2Vg,n−1

g + 1

)
= 4(2αj + 1)Vg,n−1 +On

(
〈α〉3 Vg,n

(g + 1)2

)
by equation (3.12).

• Term T2:

T2 = 8(2αj + 1)
+∞∑
i=0

(ui+1 − ui) cg,n−1(i+ α1 + αj, α2, . . . , α̂j, . . . , αn)

= 8(2αj + 1)
+∞∑
i=0

(ui+1 − ui)
(
Vg,n−1 +On

(
(i+ |α|)2Vg,n−1

g + 1

))
by Lemma 3.21. But

∑+∞
i=0 (ui+1 − ui) = 1

2
and

∑+∞
i=0 i(ui+1 − ui) converges by

Lemma 3.11. Therefore, by equation (3.12) again,

T2 = 4(2αj + 1)Vg,n−1 +On
(
〈α〉3 Vg,n

(g + 1)2

)
.

As a conclusion, we have proved that

δ1A(j)
g,n(α) =

4Vg,n−1 +On
(
〈α〉3 Vg,n

(g+1)2

)
if α1 = αj = 0

8(2αj + 1)Vg,n−1 +On
(
〈α〉3 Vg,n

(g+1)2

)
otherwise.

We rewrite this equation as

δ1A(j)
g,n(α) = 4(4αj + 2− 1α1=αj=0)Vg,n−1 +On

(
〈α〉3 Vg,n

(g + 1)2

)
.

By the same process, we prove that, when g ≥ 1,

δ1Bg,n(α) = 4(4α1 − 1 + 21α1=0)Vg−1,n+1 +On
(
〈α〉3 Vg,n

(g + 1)2

)
.

Indeed,

δ1Bg,n(α) = 8
∑

k1+k2=α1−2

cg−1,n+1(k1, k2, α2, . . . , αn)

+ 16
+∞∑
i=0

∑
k1+k2=i+α1−1

(ui+1 − ui) cg−1,n+1(k1, k2, α2, . . . , αn)

=T1 + T2.
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• On the one hand, T1 is equal to zero if α1 = 0, and otherwise,

T1 = 8(α1 − 1)Vg−1,n+1 +On
(
〈α〉3 Vg,n

(g + 1)2

)
.

• On the other hand,

T2 = 16
+∞∑
i=0

(α1 + i)(ui+1 − ui)Vg−1,n+1 +On
(
〈α〉3Vg,n

g2

)
= 4(2α1 + 1)Vg−1,n+1 +On

(
〈α〉3 Vg,n

(g + 1)2

)
because

∑+∞
i=0 (ui+1 − ui) = 1

2
and

∑+∞
i=0 i(ui+1 − ui) = 1

4
[MZ15, Lemma 2.1].

Finally, we observe that we have proved, when computing the first order term, that∑
ι∈Ig,n

δ1C(ι)
g,n(α) = On

(
〈α〉 Vg,n

(g + 1)2

)
so the separating term does not contribute to the second-order approximation.

Summing the different terms δ1A(j)
g,n for j ∈ {2, . . . , n} and δ1Bg,n(α) leads to the

claim.

3.3.2.2 Discrete integration

We can now prove Proposition 3.24 using Lemma 3.25 and discrete integration.

Proof. By Lemma 3.23, 3.25 and the symmetry of the coefficients, we can write

cg,n(α) = Vg,n −
n∑
i=1

αi−1∑
k=0

δicg,n(0i−1, k, αi+1, . . . , αn)

= Vg,n −
n∑
i=1

αi−1∑
k=0

ψ(1)
g,n(k,0i−1, αi+1, . . . , αn) +On

(
〈α〉4 Vg,n

(g + 1)2

)
= Vg,n − 4Vg−1,n+1T1 − 4Vg,n−1T2 +On

(
〈α〉4 Vg,n

(g + 1)2

)
where

T1 :=
n∑
i=1

αi−1∑
k=0

(4k − 1 + 21k=0)

and T2 :=
n∑
i=1

αi−1∑
k=0

[
(i− 1)(2− 1k=0) +

n∑
j=i+1

(4αj + 2− 1k=αj=0)

]
.
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• On the one hand, we observe that the term 1k=0 contributes to the sum if and
only if αi > 0, and hence

T1 =
n∑
i=1

(
2α2

i − 3αi + 21αi>0

)
=

n∑
i=1

(
(2αi + 1)(2αi)

2
+ 4− 2(2αi + 1)− 21αi=0

)
.

• On the other hand,

T2 =
n∑
i=1

[
(i− 1)(2αi − 1αi>0) +

n∑
j=i+1

(4αiαj + 2αi − 1αi>01αj=0)

]

= 4
∑
i<j

αiαj + 2(n− 1)
n∑
i=1

αi +
∑
i>j

(1αi=0 − 1) +
∑
i<j

(1αi=0 − 1)1αj=0

=
∑
i<j

(
(2αi + 1)(2αj + 1)− 2 + 1αi=αj=0

)
.

3.3.2.3 Proof of the volume estimate

In order to conclude to the proof of Theorem 3.19, we need to compute∑
α∈Nn0

φ(1)
g,n(α)

n∏
j=1

x
2αj
j

22αj(2αj + 1)!

where φ
(1)
g,n(α) is the approximation of the coefficient cg,n(α) from Proposition 3.24. We

have expressed φ
(1)
g,n in terms of polynomials p1(X) = 2X+1 and p2(X) = (2X+1)(2X)

in order to make this computation easier.
Since this will be useful for the general case, let us set some notations.

Notation 5. For any integer k ≥ 0, we set

pk(X) =
k−1∏
j=0

(2X + 1− j) = (2X + 1)(2X)(2X − 1) . . . (2X + 2− k),

with the convention that the empty product is equal to one so that p0(X) = 1.

Then, we can prove the following.

Lemma 3.26. Let k ∈ N0. For any x ∈ R,

+∞∑
α=0

pk(α)x2α

22α(2α + 1)!
=

{
xk

2k
sinhc

(
x
2

)
if k is even

xk−1

2k−1 cosh
(
x
2

)
if k is odd.
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Since the polynomials (pk)k≥0 are a basis of the set of polynomials R[X], we will be
able to express any polynomial function of α in terms of them.

We can now finish the proof of Theorem 3.19.

Proof. By Proposition 3.24 and the expression of Vg,n(x) in terms of (cg,n(α))α,

Vg,n(x)

Vg,n
= f (1)

g,n(x)
n∏
j=1

sinhc
(xj

2

)
+On

 Vg,n
(g + 1)2

∑
α∈Nn0
α 6=0n

|α|4∞
n∏
j=1

x
2αj
j

22αj(2αj + 1)!


where

f (1)
g,n(x) =

1∏n
j=1 sinhc

(xj
2

) ∑
α∈Nn0

φ
(1)
g,n(α)

Vg,n

n∏
j=1

x
2αj
j

22αj(2αj + 1)!
·

We replace φ
(1)
g,n by its expression from Proposition 3.24, and find the claimed expression

by Lemma 3.26. The remainder is

On
(

Vg,n
(g + 1)2

〈x〉3 exp

(
x1 + . . .+ xn

2

))
because for all y ≥ 0,

+∞∑
k=1

k4y2k

22k(2k + 1)!
≤ y2 +

+∞∑
k=2

p4(k)y2k

22k(2k + 1)!
= y2 +

y4

24
sinhc

(y
2

)
≤ 〈y〉3 exp

(y
2

)
.

3.3.3 Proof of the asymptotic expansion

We now focus on the proof of an asymptotic expansion of Vg,n(x), at higher orders, that
is Theorem 3.18. The proof goes at follows.

• In Section 3.3.3.1, we prove a technical estimate on discrete derivatives of the
volume coefficients, of the form

δmcg,n(α) = On,N
(

Vg,n
(g + 1)N

〈α〉N
)
.

for large enough m and α (depending on N) – see Theorem 3.27.

• We then conclude quite straightforwardly in Section 3.3.3.2 using discrete Taylor
expansions (Lemma 3.31).



3.3. HIGH-GENUS ASYMPTOTIC EXPANSION 89

3.3.3.1 Estimate of discrete derivatives

Let us first start by proving an estimate of the iterated derivatives on the volume
coefficients (cg,n(α))α.

Theorem 3.27. There exists an increasing sequence (aN)N≥0 of integers such that, for
any n ∈ N, N ∈ N0, there exists a constant Cn,N > 0 satisfying the following. For any
integer g such that 2g − 2 + n > 0, any multi-index m of norm |m| ∈ {2N − 1, 2N}
and any multi-index α ∈ Nn0 such that ∀i, (mi 6= 0⇒ αi ≥ aN),

|δmcg,n(α)| ≤ Cn,N
Vg,n〈α〉N

(g + 1)N
·

The proof uses the topological recursion formula (3.2). In order to be able to apply
the discrete differential operator δ on its terms (3.4) and (3.5), we will use the following
lemma.

Lemma 3.28. Let us consider a sequence (vk)k≥0 of the form

vk =
∑

k1+k2=k
k1,k2≥0

ck1,k2

where (ck1,k2)k1,k2≥0 is a family of real numbers. Then, for any integers m ≥ 1 and
k ≥ 0,

δmvk =
∑

k1+k2=k
k1≥k2

δm1 ck1,k2 +
∑

k1+k2=k
k1<k2

δm2 ck1,k2 −
∑

m1+m2=m−1
m1,m2≥0

δm1
1 δm2

2 cb k+1
2
c,b k

2
c+1.

Proof. We prove the formula by induction on the integer m. The initialisation at m = 0
is trivial, since the last sum is empty in this case. For m ≥ 0, let us assume the property
at rank m.

Let k be an integer. We assume that k = 2p+ 1 is an odd number. By definition of
the operator δ and thanks to the induction hypothesis,

δm+1vk =δmvk − δmvk+1

=
∑

k1+k2=2p+1
k1≥k2

δm1 ck1,k2 −
∑

k1+k2=2p+2
k1≥k2

δm1 ck1,k2

+
∑

k1+k2=2p+1
k1<k2

δm2 ck1,k2 −
∑

k1+k2=2p+2
k1<k2

δm2 ck1,k2

−
∑

m1+m2=m−1

(δm1
1 δm2

2 cp+1,p+1 − δm1
1 δm2

2 cp+1,p+2)

=:S1 − S2 + S3 − S4 − S5.
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Let us perform a change of indices k′1 = k1 − 1 in the sum S2, singling out the term of
S2 for which k1 = k2 = p+ 1, so that we sum over the same set of indices as S1:

S1 − S2 =
∑

k1+k2=2p+1
k1≥k2

δm+1
1 ck1,k2 − δm1 cp+1,p+1.

There is no boundary term when we do the same to S3 and S4, now changing the
index k2:

S3 − S4 =
∑

k1+k2=2p+1
k1<k2

δm+1
2 ck1,k2 .

We then observe that δm1 cp+1,p+1 + S5 is equal to

δm1 cp+1,p+1 +
∑

m1+m2=m−1

δm1
1 δm2+1

2 cp+1,p+1 =
∑

m1+m2=m

δm1
1 δm2

2 cp+1,p+1

which leads to the claimed expression for δm+1vk. The proof when k is even is the
same.

We can now proceed to the proof of Theorem 3.27.

Proof. The proof is an induction on the integer N . The case N = 0 is trivial: indeed,
by Lemma 3.12,

∀α ∈ Nn0 , |c(g,n)
α | ≤ Vg,n.

In order to be able to use Mirzakhani’s recursion formula, we observe that the result
is trivial when 2g − 2 + n = 1, for any N > 0. Indeed,

• if (g, n) = (0, 3), then δmc0,3(α1, α2, α3) = 0 for any m and any α 6= 03

• if (g, n) = (1, 1), then δmc1,1(α) = 0 for any m and any α ≥ 2.

As a consequence, provided that aN ≥ 2 for N ≥ 1, the result is automatic.
For an integer N ≥ 0, let us assume the result to hold at the rank N , and prove it

at the rank N+1. Let us consider integers g, n such that 2g−2+n > 1. Let m, α ∈ Nn0
be multi-indices, such that:

• |m| = m1 + . . .+mn = 2N + 1

• ∀i, (mi 6= 0⇒ αi ≥ aN+1),

where an+1 is an integer that will be determined during the proof. By symmetry of the
volume coefficients, we can assume that m1 > 0.

Let us write the coefficient δmc
(g,n)
α using Mirzakhani’s topological recursion formula,

equation (3.2).

|δmcg,n(α)| ≤
n∑
j=2

|δmA(j)
g,n(α)|+ |δmBg,n(α)|+

∑
ι∈Ig,n

|δmC(ι)
g,n(α)|

=: (A) + (B) + (C).
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We shall estimate these different contributions successively, keeping in mind that the
aim is to establish a decay for each term at the rate Vg,n〈α〉N+1/(g + 1)N+1.

Estimate of the term (A). The term (A) is equal to zero if n = 1, and then there is
nothing to be proved. Otherwise, let j ∈ {2, . . . , n}. By equation (3.3),

A(j)
g,n(α) = 8 (2αj + 1)

+∞∑
i=0

ui cg,n−1(α̃(i))

where α̃(i) := (i+ α1 + αj − 1, α2, . . . , α̂j, . . . , αn). By a change of variable in the sum,
if we set u−1 = 0, then

δ1A(j)
g,n(α) = 8 (2αj + 1)

+∞∑
i=0

(ui − ui−1) cg,n−1(α̃(i)).

• Let us first treat the case when mj = 0. By applying the discrete derivatives
δm1−1

1 and δmii for i /∈ {1, j}, we observe that

δmA(j)
g,n(α) = 8 (2αj + 1)

+∞∑
i=0

(ui − ui−1) δm̃cg,n−1(α̃(i))

for m̃ = (m1 − 1,m2, . . . , m̂j, . . . ,mn). Then, the bound on ui − ui−1 obtained in
Lemma 3.11 implies the existence of a universal constant C > 0 such that

|δmA(j)
g,n(α)| ≤ C〈α〉

+∞∑
i=0

4−i |δm̃cg,n−1(α̃(i))|. (3.24)

We now want to use the induction hypothesis to bound δm̃cg,n−1(α̃(i)), for every
i ∈ N0. We observe that |m̃| = 2N . We decide to chose the parameter aN+1 so
that an+1 > aN . Then, i + α1 + αj − 1 ≥ α1 − 1 ≥ aN , and the multi-indices m̃,
α̃(i) satisfy the hypotheses at the rank N . Hence,

|δm̃cg,n−1(α̃(i))| ≤ Cn−1,N
Vg,n−1

(g + 1)N
〈α̃(i)〉N = On,N

(
Vg,n

(g + 1)N+1
〈α〉N〈i〉N

)
by equation (3.12). Then, if mj = 0,

|δmA(j)
g,n(α)| = On,N

(
〈α〉

+∞∑
i=0

4−i
Vg,n

(g + 1)N+1
〈α〉N〈i〉N

)

= On,N
(

Vg,n
(g + 1)N+1

〈α〉N+1

)
,

which is precisely our claim.
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• Now, if mj > 0, we need to be more careful when applying the derivative δj
because of the presence of the term αj in A(j)

g,n(α). We prove that

δmA(j)
g,n(α) = 8 (2αj + 1)

+∞∑
i=0

(ui − ui−1) δm̃cg,n−1(α̃(i))

− 16mj

+∞∑
i=0

(ui − ui−1) δm̂cg,n−1(α̃(i))

where m̂ = (m1+mj−2,m2, . . . , m̂j, . . . ,mn). We observe that |m̂| = 2N−1, and
this allows us to apply the induction hypothesis to this additional term. The same
computation as in the case mj = 0 leads to the same bound, since mj = ON (1).

We add the n− 2 = On (1) contributions for j ∈ {2, . . . , n} and conclude that

n∑
j=2

|δmA(j)
g,n(α)| = On,N

(
Vg,n

(g + 1)N+1
〈α〉N+1

)
. (3.25)

�

Estimate of the term (B). Let us first observe that this term only appears whenever
g ≥ 1. As in the case (A), we start by observing that by equation (3.4),

δ1Bg,n(α) = 16
+∞∑
i=0

∑
k1+k2=i+α1−2

(ui − ui−1) cg−1,n+1(α̃(k1,k2))

where α̃(k1,k2) = (k1, k2, α2, . . . , αn). However, for this term, the dependency on α1 is
more complex, and we need to use Lemma 3.28 to apply the operator δm1−1

1 to the
previous equation. We obtain:

|δmB(g,n)
α | ≤C

+∞∑
i=0

∑
k1+k2=i+α1−2

k1≥k2

4−i |δm1−1
1 δm̃cg−1,n+1(α̃(k1,k2))| (3.26)

+ C
+∞∑
i=0

∑
k1+k2=i+α1−2

k1<k2

4−i |δm1−1
2 δm̃cg−1,n+1(α̃(k1,k2))| (3.27)

+ C
∑

µ1+µ2=m1−2

+∞∑
i=0

4−i|δµ1

1 δµ2

2 δm̃cg−1,n+1(α̃(b i+α1−1
2
c,b i+α1

2
c))|, (3.28)

where m̃ = (0, 0,m2, . . . ,mn) ∈ Nn+1
0 , and the universal constant C > 0 comes once

again from equation (3.6). We estimate each term successively, using the induction
hypothesis.
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• Let us assume that the parameter aN+1 is ≥ 2aN + 2. Then, by hypothesis,
α1 ≥ 2aN + 2, and therefore for any i ≥ 0 and any k1, k2 in the i-th term of the
sum (3.26),

k1 ≥
k1 + k2

2
=
i+ α1 − 2

2
≥ aN .

We can then apply the induction hypothesis to the multi-indices (m1−1,0n)+m̃
of norm 2N and α̃(k1,k2), which yields

|δm1−1
1 δm̃cg−1,n+1(α̃(k1,k2))| ≤ Cn+1,N

Vg−1,n+1

gN
〈α̃(k1,k2)〉N

= On,N
(

Vg,n
(g + 1)N+1

〈α̃(k1,k2)〉N
)

since g ≥ 1, and by equations (3.9) and (3.12). We then use the fact that

+∞∑
i=0

∑
k1+k2=i+α1−2

k1≥k2

4−i〈α̃(k1,k2)〉N = ON
(
〈α〉N+1

)
, (3.29)

to conclude that if aN+1 ≥ 2aN+2, then the term (3.26) isOn,N
(

Vg,n
(g+1)N+1 〈α〉N+1

)
.

• By symmetry of the coefficients, the term (3.27) is equal to

+∞∑
i=0

∑
k1+k2=i+α1−2

k2>k1

4−i |δm1−1
1 cg−1,n+1(α̃(k2,k1))|

is therefore smaller than the term (3.26).

• For the term (3.28), we observe that since α1 ≥ 2aN + 2, for all i ≥ 0,⌊
i+ α1

2

⌋
≥
⌊
i+ α1 − 1

2

⌋
≥ α1 − 2

2
≥ aN .

Furthermore, for any integers such that µ1+µ2 = m1−1, the norm of (µ1, µ2,0
n−1)+

m̃ is equal to 2N − 1, and therefore, by the induction hypothesis,

|δµ1

1 δµ2

2 δm̃cg−1,n+1(α̃(b i+α1−1
2
c,b i+α1

2
c))| ≤ Cn+1,N

Vg−1,n+1

gN
〈α̃(b i+α1−1

2
c,b i+α1

2
c)〉N .

and therefore we can prove that the term (3.28) satisfies the same bound as the
other terms.

As a conclusion, provided that aN+1 ≥ 2aN + 2,

(B) = |δmBg,n(α)| = On,N
(

Vg,n
(g + 1)N+1

〈α〉N+1

)
.

�
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Estimate of the term (C). For the term (C), similarly, by equation (3.5), for every ι =
(g1, I, J), where g1 + g2 = g, if we denote n1 = |I| and n2 = |J |,

δ1C(ι)
g,n(α) = 16

+∞∑
i=0

∑
k1+k2=i+α1−2

(ui − ui−1) cg1,n1+1(α̃
(k1)
I ) cg2,n2+1(α̃

(k2)
J )

where α̃
(k1)
I = (k1, αI) and α̃

(k2)
J = (k2, αJ). As before, we prove that

|δmC(ι)
g,n(α)| (3.30)

≤ C

+∞∑
i=0

∑
k1+k2=i+α1−2

k1≥k2

4−i|δ(m1−1,mI)cg1,n1+1(α̃
(k1)
I )||δ(0,mJ )cg2,n2+1(α̃

(k2)
J )| (3.31)

+ C

+∞∑
i=0

∑
k1+k2=i+α1−2

k1<k2

4−i|δ(0,mI)cg1,n1+1(α̃
(k1)
I )||δ(m1−1,mJ )cg2,n2+1(α̃

(k2)
J )| (3.32)

+ C
∑

µ1+µ2=m1−2

+∞∑
i=0

4−i|δ(µ1,mI)cg1,n1+1(α̃
(b i+α1−1

2
c)

I )||δ(µ2,mJ )cg2,n2+1(α̃
(b i+α1

2
c)

I )|. (3.33)

We now estimate the term (3.31) using the induction hypothesis on the two terms

δ(m1−1,mI)cg1,n1+1(α̃
(k1)
I ) and δ(0,mJ )cg2,n2+1(α̃

(k2)
J ). Let us set

N1 :=

⌊
m1 + |mI |

2

⌋
and N2 :=

⌊
|mJ |+ 1

2

⌋
so thatm1−1+|mI | ∈ {2N1−1, 2N1} and |mJ | ∈ {2N2−1, 2N2}. Then, we observe that
under the hypothesis aN+1 ≥ 2aN + 2, for any term in equation (3.31), k1 ≥ aN ≥ aN1 .
We can therefore apply the induction hypothesis at the rank N1 and obtain

|δ(m1−1,mI)cg1,n1+1(α̃
(k1)
I )| = On1,N1

(
Vg1,n1+1

(g1 + 1)N1
〈α̃(k1)

I 〉
N1

)
.

We also have that

|δ(0,mJ )cg2,n2+1(α̃
(k2)
J )| = On2,N2

(
Vg2,n2+1

(g2 + 1)N2
〈α̃(k2)

J 〉
N2

)
(note that there is no condition on the index k2 because there is no derivative w.r.t. the
first variable in δ(0,mJ )). We obtain by the same method as before that the term (3.31)
is

On,N1,N2

(
Vg1,n1+1Vg2,n2+1

(g1 + 1)N1(g2 + 1)N2
〈α〉N1+N2+1

)
. (3.34)

We then wish to apply Lemma 3.17 in order to bound the sum over all configurations.
More precisely, this lemma states that∑

ι: 2gi+ni>Ni+1

Vg1,n1+1Vg2,n2+1

(g1 + 1)N1(g2 + 1)N2
= On,N1,N2

(
Vg,n1+n2

gN1+N2+1

)
= On,N

(
Vg,n
gN+2

)
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since n1 + n2 = n− 1, by equation (3.12), and because

N1 +N2 =

⌊
m1 + |mI |

2

⌋
+

⌊
|mJ |+ 1

2

⌋
∈ {N,N + 1}.

Then, we observe that we need to be able to say that 2gi+ni > Ni+1 for i ∈ {1, 2}.
This is achieved by adding a new constraint on the parameter aN+1. Indeed,

k1 + |αI | ≥
k1 + k2

2
+ |αI | ≥

α1 + |αI |
2

− 1 ≥ aN+1

2
#{i ∈ {1} ∪ I : mi 6= 0} − 1

by hypothesis on α, and

#{i ∈ {1} ∪ I : mi 6= 0} ≥ m1 + |mI |
|m|∞

≥ 2N1

2N + 1
·

As a consequence, if we assume that aN+1 ≥ 3(2N +1), then for any configuration such
that 2g1 + n1 ≤ N1 + 1,

k1 + |αI | ≥
aN+1N1

2N + 1
− 1 ≥ 3N1 − 1 ≥ 6g1 + 3n1 − 4 > 3g1 − 3 + (n1 + 1),

because 3g1 + 2n1 > 2. The latter quantity is the degree of the polynomial Vg1,n1+1(x),
and therefore the previous inequality implies that δ(m1−1,mI)cg1,n1+1(k1, αI) = 0. Simi-
larly, we prove that

k2 + |αJ | ≥
aN+1|mJ |
|m|∞

≥ 3(2N2 − 1)

and therefore if 2g2 + n2 ≤ N2 + 1, then

k2 + |αJ | ≥ 12g2 + 6n2 − 9 > 3g2 − 3 + (n2 + 1)

and hence δ(0,mJ )cg2,n2+1(k2, αJ) = 0. This allows us to conclude for the term (3.31):
we have proved that it is

On,N
(
Vg,n
gN+2

〈α〉N+2

)
= On,N

(
Vg,n
gN+1

〈α〉N+1

)
because it is equal to zero unless |α| ≤ 3g − 3 + n.

The estimate of the term (3.33) is the same: we apply the induction hypothesis to

δ(µ1,mI)cg1,n1+1(α̃
(b i+α1−1

2
c)

I ) and δ(µ2,mJ )cg2,n2+1(α̃
(b i+α1

2
c)

I ), at the admissible ranks

N1 :=

⌊
µ1 + |mI |+ 1

2

⌋
and N2 :=

⌊
µ2 + |mJ |+ 1

2

⌋
.

We observe that N1 +N2 = N , and this therefore yields the claimed result. �
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As a conclusion, we have proved that under the hypotheses aN+1 ≥ 2aN + 2 and
aN+1 ≥ 3(2N + 1), for any multi-index m of norm |m| = 2N + 1 and any multi-index
α such that ∀i, (mi 6= 0⇒ αi ≥ aN+1),

|δmcg,n(α)| ≤ (A) + (B) + (C) ≤ Cn,N+1
Vg,n

(g + 1)N+1
〈α〉N+1.

This implies the result for any multi-index m of norm 2N + 2 as well. Indeed, for any
multi-index m of norm 2N + 2, there is an index i such that mi > 0, which we can
assume without loss of generality to be 1. Then, for any sequence (v(α))α and any α,

|δmv(α)| ≤ |δ(m1−1,m2,...,mn)v(α)|+ |δ(m1−1,m2,...,mn)v(α1 + 1, α2, . . . , αn)|.

This concludes the induction.

3.3.3.2 Function ultimately polynomial in each variable

We observe that Theorem 3.27 states that the function α 7→ cg,n(α) has small derivatives
for large enough values of α. Had we proved that the iterated derivatives are small for
any α, we could have used a discrete version of the Taylor-Lagrange formula, such as
the one that follows, to conclude that α 7→ cg,n(α) is well-approximated by polynomial
functions.

Lemma 3.29 (Discrete Taylor-Lagrange formula). Let n ∈ N and f : Nn0 → R. We
assume that there exists numbers M > 0 and K, d ∈ N0 such that, for any multi-index
m of norm |m| = K + 1,

∀α ∈ Nn0 , |δmf(α)| ≤M〈α〉d.

Then, there exists a polynomial function f̃ (K) : Nn0 → R of degree at most K such that

∀α ∈ Nn0 , |f(α)− f̃ (K)(α)| ≤MnK+1〈α〉d+K+1.

Furthermore, the coefficients of the polynomial function f̃ (K) can be expressed as a linear
combination of the derivatives δmf(0n) for m ∈ Nn0 of norm |m| ≤ K.

Proof. We proceed by induction on the integer K.
For K = 0, we observe that by Lemma 3.23, for all α,

|f(α)− f(0n)| ≤
n∑
i=1

αi−1∑
k=0

|δif(0i−1, k, αi+1, . . . , αn)| ≤Mn〈α〉d+1,

so the result holds if we take f̃ (0) to be the constant function equal to f(0n).
Let us now assume the result at a rank K − 1 for a K ≥ 1, and deduce the result

at the rank K. For any integer i ∈ {1, . . . , n}, the function δif satisfies the induction

hypothesis at the rank K − 1. Hence, there exists a polynomial function f̃
(K−1)
i of
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degree at most K − 1, and coefficients that can be expressed as linear combinations of
the δmδif(0n) for |m| ≤ K − 1, such that

∀α ∈ Nn0 , |δif(α)− f̃ (K−1)
i (α)| ≤MnK〈α〉d+K .

We define

f̃ (K)(α) := f(0n)−
n∑
i=1

αi−1∑
k=0

f̃
(K−1)
i (0i−1, k, αi+1, . . . , αn).

We notice that f̃ (K) is a polynomial of degree at most K, and its coefficients are linear
combinations of f(0n) and the coefficients of (f̃i)i, and therefore linear combinations of
the δmf(0n) for |m| ≤ K. By Lemma 3.23, for all α ∈ Nn0 ,

|f(α)− f̃ (K)(α)| ≤
n∑
i=1

αi−1∑
k=0

|δif(0i−1, k, αi+1, . . . , αn)− f̃ (K−1)
i (0i−1, k, αi+1, . . . , αn)|

≤MnK+1〈α〉d+K+1,

and the conclusion follows.

However, we can expect from the second-order approximation, Proposition 3.24,
that the function α 7→ cg,n(α) is not well-approximated by polynomial functions, but
rather by a combination of polynomial functions and indicator functions, correcting the
small values. In order to make the description of such functions more systematic, we
introduce the following definition.

Lemma 3.30 (and Definition). For any n ∈ N and K, a ∈ N0, the two following
families of functions from Nn0 to R,

• functions of the form

α 7→
∏
i∈I

αkii
∏
i/∈I

1αi=βi

where I ⊆ {1, . . . , n}, k = (ki)i∈I is a multi-index of norm |k| ≤ K, and β =
(βi)i/∈I is such that |β|∞ < a;

• functions of the form

α 7→
∏
i∈I

αkii 1αi≥a
∏
i/∈I

1αi=βi

where I,k and β are defined the same way as in the first point;

generate the same linear subspace of the space of functions Nn0 → R. We denote this
space as Pn,K,a, and call its elements polynomials (of degree at most K) in each variable
greater than a.
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Proof. The equivalence of these two definitions comes from the simple observation that
for any a, α ∈ N0,

1 = 1α≥a +
a−1∑
β=0

1α=β.

Then, elements of Pn,K,a are exactly the kind of functions we imagine the coefficients
α 7→ cg,n(α) to be well-approximated by: since the derivatives vanish for large enough
α, beyond a few small values, the functions are approximated by polynomials. More
precisely, let us use the following shifted Taylor lemma.

Lemma 3.31. Let n ∈ N and f : Nn0 → R. We assume that there exists numbers
M > 0 and K, a, d ∈ N0 satisfying the following. For any multi-index m ∈ Nn0 of norm
|m| = K + 1, any α ∈ Nn0 such that ∀i, (mi 6= 0⇒ αi ≥ a), we have

|δmf(α)| ≤M〈α〉d.

Then, there exists a function f̃ (K) ∈ Pn,K,a such that

∀α ∈ Nn0 , |f(α)− f̃ (K)(α)| ≤ Cn,a,d,KM〈α〉d+K+1

where Cn,a,d,K = 2
d
2

+n〈2na〉dannK+1.
The coefficients of f̃ (K) can be expressed as linear combinations of the values δmf(α)

for α ∈ Nn0 such that |α|∞ ≤ a and m ∈ Nn0 such that |m| ≤ K.

Proof. The idea is to decompose Nn0 into subsets on which all of the variables are greater
than a. More precisely, we notice that

1 =
∑

I⊂{1,...,n}

∑
(βi)i/∈I
|β|∞<a

∏
i∈I

1αi≥a
∏
i/∈I

1αi=βi .

Then, we can rewrite the function f as

f(α) =
∑

I⊂{1,...,n}
={i1<...<ir}

∑
(βi)i/∈I
|β|∞<a

gI,β(αi1 − a, . . . , αir − a)
∏
i∈I

1αi≥a
∏
i/∈I

1αi=βi (3.35)

where gI,β : Nr0 → R is defined by gI,β(α̂) := f(α) for any α̂ ∈ Nr0, where

∀i, αi :=

{
α̂k + a if i = ik for a k ∈ {1, . . . , r}
βi if i /∈ I.

We wish to apply Lemma 3.29 to the function gI,β. In order to do so, we observe
that, for any multi-index m̂ ∈ Nr0 of norm K + 1, if we can define m ∈ Nn0 of norm
K + 1 so that

∀i,mi :=

{
m̂k if i = ik for a k ∈ {1, . . . , r}
0 if i /∈ I.
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Then, for any α̂ ∈ Nr0, αi ≥ a as soon as mi 6= 0, and therefore, by hypothesis on f ,

|δm̂gI,β(α̂)| = |δmf(α)| ≤M〈α〉d ≤M2
d
2 〈2na〉d〈α̂〉d

because for any x, y, 〈x+y〉 ≤
√

2〈x〉〈y〉, and |α| = |α̂|+ra+ |β| ≤ 2na+ |α̂|. Then, by

Lemma 3.29, there exists a polynomial g̃
(K)
I,β in r variables, of degree at most K, such

that

∀α̂ ∈ Nr0, |gI,β(α̂)− g̃(K)
I,β (α̂)| ≤M2

d
2 〈2na〉dnK+1〈α̂〉d+K+1. (3.36)

Let us now define an element f̃ (K) of Pn,K,a by the formula

f̃ (K)(α) :=
∑

I⊂{1,...,n}
={i1<...<ir}

∑
(βi)i/∈I
|β|∞<a

g̃
(K)
I,β (αi1 − a, . . . , αir − a)

∏
i∈I

1αi≥a
∏
i/∈I

1αi=βi . (3.37)

By equations (3.35) and (3.37) together with (3.36), for any α ∈ Nn0 ,

|f(α)− f̃ (K)(α)| ≤M2
d
2

+n〈2na〉dannK+1〈α〉d+K+1

because there are 2n terms in the sum over the I ⊆ {1, . . . , n}, and always less than an

possible choices for β. This is the claimed inequality.
The coefficients of f̃ (K) are linear combinations of the coefficients of the g̃

(K)
I,β . By

Lemma 3.29, these are themselves linear combinations of the values δm̂gI,β(0#I) for
multi-indices m̂ of norm |m̂| ≤ K. By definition of gI,β, these derivatives are derivatives
of the form δmf(α) for multi-indices m, α such that |α|∞ ≤ a and |m| ≤ K.

We can now conclude with the proof of the asymptotic expansion, Theorem 3.18.

Proof. Let g, n be integers such that 2g − 2 + n > 0, and N ∈ N0 be a fixed order. By
Theorem 3.27, there exists constants Cn,N , aN+1 such that

|δmcg,n(α)| ≤ Cn,N
Vg,n

(g + 1)N+1
〈α〉N+1

for any multi-index m for norm 2N + 1 and α such that ∀i, (mi 6= 0 ⇒ αi ≥ aN+1).
This is exactly the hypothesis of Lemma 3.31, for the parameters K = 2N , d = N + 1,
a = aN+1 and M = Cn,NVg,n/(g + 1)N+1. As a consequence, there exists an element

c̃
(K)
g,n of Pn,K,a such that for all α ∈ Nn0 ,

|cg,n(α)− c̃(K)
g,n (α)| ≤MCn,a,d,K〈α〉d+K+1

or, equivalently,

cg,n(α) = c̃(K)
g,n (α) +On,N

(
Vg,n

(g + 1)N+1
〈α〉3N+2

)
. (3.38)
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Let us now define, for all x ∈ Rn≥0, a good candidate for the approximating function,

f (N)
g,n (x) :=

1

Vg,n

∑
α∈Nn0

c̃(2N)
g,n (α)

n∏
i=1

x2αi+1
i

22αi(2αi + 1)!
·

Then, by equation (3.38) and the definition of Vg,n(x) and f
(N)
g,n (x),

x1 . . . xnVg,n(x)

Vg,n
= f (N)

g,n (x) +On,N

 1

(g + 1)N+1

∑
α∈Nn0

〈α〉3N+2

n∏
i=1

x2αi+1
i

22αi(2αi + 1)!


= f (N)

g,n (x) +On,N
(

1

(g + 1)N+1
〈x〉3N+2 exp

(
x1 + . . .+ xn

2

))
.

As a consequence, the approximating function f
(N)
g,n satisfies the claimed estimate.

Let us now prove that x 7→ f
(N)
g,n (x) has the claimed form. Note that by definition

of the set Pn,K,a, and because the polynomials (pi)0≤i≤K introduced in Notation 5 are

a basis of the set of polynomial of degree K, we can express the function α 7→ c̃
(K)
g,n (α)

as a linear combination of functions of the form

gI,β,k(α) =
∏
i∈I

pki(αi)
∏
i/∈I

1αi=βi ,

where |k| ≤ K and |β|∞ < aN+1. By Lemma 3.26,

∑
α∈Nn0

gI,β,k(α)
n∏
i=1

x2αi+1
i

22αi(2αi + 1)!

=
∏
i∈I

ki even

xkii
2ki−1

sinh
(xi

2

) ∏
i∈I

ki odd

xkii
2ki−1

cosh
(xi

2

)∏
i/∈I

x2βi+1
i

22βi(2βi + 1)!
·

By replacing sinh and cosh by their definitions, we deduce that f
(N)
g,n is a linear combi-

nation of functions of the form

x 7→ xk
∏
i∈I+

exp

(
+xi

2

)∏
i∈I−

exp

(
−xi

2

)

where I+ and I− are disjoint subsets of {1, . . . , n}, and k is a multi-index such that∑
i∈I+

ki +
∑
i∈I−

ki ≤ K and ∀i /∈ I+ ∪ I−, ki < 2aN+1.

We set εi = 1 if i ∈ I+, −1 if i ∈ I− and 0 otherwise, and find the claimed expression.
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The coefficients are linear combinations of the derivatives 1
Vg,n

δmcg,n(α) for |m| ≤ K

and |α|∞ ≤ a. By Lemma 3.12,

1

Vg,n
δmcg,n(α) ≤ 2|m| ≤ 22N+1

and, therefore, the coefficients of the polynomials are bounded by a constant depending
only on N and n (the number n appears because of the linear combinations).
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Chapter 4

Large-scale geometry

The objective of this chapter is to study the geometry of typical surfaces of high genus
g at a scale log g. We aim to demonstrate that, even though geodesics shorter than
log g exist, they are rare. This is achieved by adapting two concepts from the theory of
random graphs.

• In Section 4.1, we prove that typical surfaces converge in the sense of Benjamini–
Schramm to the hyperbolic plane. In other words, most points of a typical surface
have a large injectivity radius.

• In Sections 4.2 and 4.3, we prove that the few short geodesics are far away from
one another rather than clustered. In order to do so, we introduce a notion of
‘tangle-freeness’ and study its geometric implications.

4.1 Benjamini–Schramm convergence

The contents of this section are adapted from a part of the article [Mon21],
to appear in Analysis & PDE. Their generalisation to the non-compact case
will appear in a new version of [LMS20].

The notion of Benjamini–Schramm convergence has first been introduced by Ben-
jamini and Schramm in the context of sequences of graphs [BS01], but can naturally be
extended to a continuous setting (see [ABB+11, ABB+17, Bow15]). There is a general
definition of Benjamini–Schramm convergence for a deterministic sequence of hyper-
bolic surfaces (Xg)g. In the special case when the limit of (Xg)g is the hyperbolic plane
H, it is equivalent to the following simpler property:

∀L > 0, lim
g→+∞

VolXg({z ∈ Xg : InjRadz(Xg) < L})
VolXg(Xg)

= 0 (4.1)

which we will therefore use as a definition.
The idea behind this characterisation is the following. We consider a distance L > 0.

On the (fixed) surface Xg, one can pick a point z at random, using the normalised

103
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measure 1
VolXg (Xg)

VolXg . Equation (4.1) means that the probability for the ball of

center z and radius L to be isometric to a ball in the hyperbolic plane goes to one as
g → +∞.

The case where InjRad(Xg)→ +∞ as g → +∞ is a simple situation which implies
Benjamini–Schramm convergence towards H. However, [Mir13, Theorem 4.2] proves
that this does not occur with high probability for our probabilistic model.

The main result of this section is the following, which is a quantitative estimate
of the Benjamini–Schramm speed of convergence of typical surfaces to the hyperbolic
plane in the high-genus limit.

Theorem 4.1. For any g ≥ 2 and any L,M > 0, there exists a set Ag,L,M ⊂Mg such
that for any hyperbolic surface X ∈ Ag,L,M ,

VolX({z ∈ X : InjRadz(X) < L}) ≤ eLM, (4.2)

and 1− PWP
g (Ag,L,M) = O

(
e2L

M

)
.

We recall that the implied constant is independent of the genus g and the parameters
L, M . Since the total area of a compact hyperbolic surface of genus g is 2π(2g−2), this
result will only be interesting for L ≤ log g and M ≤ g. Specifying the parameters to
be L = 1

6
log g, M = g

1
2 and rg = g−

1
24 (log g)

9
16 , Mirzakhani’s result on the injectivity

radius [Mir13, Theorem 4.2] and Theorem 4.1 together lead to the following corollary.

Corollary 4.2 (Geometric assumptions). For large enough g, there exists a subset
Ag ⊂Mg such that, for any hyperbolic surface X ∈ Ag,

InjRad(X) ≥ g−
1
24 (log g)

9
16 (4.3)

VolX
(
{z ∈ X : InjRadz(X) < 1

6
log g}

)
VolX(X)

= O
(
g−

1
3

)
(4.4)

and 1− PWP
g (Ag) = O

(
g−

1
12 (log g)

9
8

)
.

The estimate (4.4) is similar to the one proved in [Mir13, Section 4.4]. The proof is
the same, though an incorrect argument has been modified here.

This result was stated this way in order to prove the main result of [Mon21]: an
estimate the number of eigenvalues of a typical surface in an spectral window [a, b] –
see Chapter 5. It has also been used as stated by LeMasson and Sahlsten in [LMS20],
in order to prove quantum ergodicity of eigenfunctions of the Laplacian for random
high-genus surfaces.

In Section 4.1.2, we extend this result for non-compact surfaces of high genus g,
under the hypothesis that the number of cusps is o(

√
g) – see Theorem 4.3.
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4.1.1 Proof in the compact case

Let us prove Theorem 4.1, that is to say Benjamini–Schramm convergence of typi-
cal surfaces to the hyperbolic plane in the high-genus limit. We follow the approach
developed by Mirzakhani in [Mir13, Section 4.4].

Proof of Theorem 4.1. Let X be a compact hyperbolic surface of genus g. In order to
estimate the volume of

X−(L) = {z ∈ X : InjRadz(X) < L},

we establish a link between this volume and the number of small geodesics on X.
Let z be a point in X of radius of injectivity r < L. There is a simple geodesic

arc c in X of length 2r based at z, which is freely homotopic to a closed geodesic γ of
length ` ≤ 2r. Let us bound the distance between z and γ; this way, we will be able to
say that z belongs in a neighbourhood of γ of small volume. We do so by a classical
geometric construction1 – see [Bus92, Theorem 4.1.6] and [Par14], for instance.

(a) On the surface X (b) On the universal cover H

Figure 4.1: Illustration of the geometric construction in the proof of Theorem 4.1.

By lifting z, c and γ to the hyperbolic plane and applying an isometry, we reduce
the problem to the situation represented in Figure 4.1: the geodesic γ is lifted to the
geodesic segment between i and e`i, and c to the segment between a point z̃ = x+ iy of
modulus 1, and e`z̃. Let us bound the distance d between z̃ and γ̃. By usual expressions
for the hyperbolic distance in the Poincaré half-plane model (see [Kat92, Theorem 1.2.6]
for instance),

cosh(d) = cosh(dH(z̃, i)) = 1 +
|z̃ − i|2

2y
= 1 +

x2 + (y − 1)2

2y
=

1

y

and

sinh(r) = sinh

(
dH(z̃, e`z̃)

2

)
=

1

2

|z̃e` − z̃|√
y2e`

=
sinh

(
`
2

)
y
·

1Note that this is precisely the missing argument in [Mir13, Section 4.4]
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As a consequence,

cosh(d) =
sinh(r)

sinh
(
`
2

) ≤ eL

2 sinh
(
`
2

) =: cosh(dmax(γ, L)).

Then z belongs to the dmax(γ, L)-neighbourhood of the closed geodesic γ in X.
The volume of this neighbourhood is less than the volume of the corresponding

collar in the cylinder of central geodesic γ, which can be computed using the Fermi
coordinates: ∫ `

0

∫ dmax(γ,L)

−dmax(γ,L)

cosh(ρ) dρ dt = 2` sinh(dmax(γ, L))

≤ 2` cosh(dmax(γ, L)) =
` eL

sinh
(
`
2

) ·
Since x ≤ sinhx, the volume of the dmax(γ, L)-neighbourhood of γ in X is smaller
than 2eL. As a consequence, any point z ∈ X−(L) is in a neighbourhood of volume less
than 2eL around a simple closed geodesic of length at most 2r ≤ 2L. This implies:

VolX(X−(L)) ≤ 2eL N`
X(0, 2L),

where, for any positive L, N`
X(0, L) is the number of simple closed geodesics with length

at most L on the hyperbolic surface X. Then, on the set

Ag,L,M =

{
X ∈Mg : N`

X(0, 2L) ≤ M

2

}
equation (4.2) is proved.

Let us estimate the Weil–Petersson probability of this event using Markov’s inequal-
ity:

PWP
g (Mg rAg,L,M) =

1

Vg

∫
Mg

1{N`X(0,2L)>M
2 } dVolWP

g (X) ≤ 2

M
EWP
g

[
N`
X(0, 2L)

]
.

The expectation of the length counting function N`
X(a, b) is estimated in Lemma 3.15.

We sum up the two equations in this lemma, with the length b = 2L, to prove that, as
g → +∞:

EWP
g

[
N`
X(0, 2L)

]
= O

(
e2L +

e2L

g

)
= O

(
e2L
)
.

4.1.2 Extension to the non-compact case

The Benjamini–Schramm convergence result of Section 4.1.1 can be extended to the
non-compact case under the hypothesis that the number of cusps is o(

√
g).
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Theorem 4.3. Let us fix sequences (n(g))g, (Lg)g and (Mg)g such that Lg → +∞,
Mg → +∞ and n(g) = o(

√
g) as g approaches infinity. Then, there exists a sequence

of subsets Ag ⊂Mg,n(g) such that:

• for any X ∈ Ag,

Vol({z ∈ X : InjRadz(X) < Lg))

Vol(X)
≤ (Mg + n(g)) eLg .

• 1− PWP
g,n(g)(Ag) = O

(
1
Mg

e2Lg
)

.

Taking Mg = 1
2

√
g and Lg = 1

6
log g, we obtain the following result, a natural

generalisation of Theorem 4.1 to the non-compact case.

Corollary 4.4. Let (n(g))g be a sequence such that n(g) = o(
√
g) as g approaches

infinity. Then,

PWP
g,n(g)

(
Vol({z ∈ X : InjRadz(X) < 1

6
log g))

Vol(X)
≤ g−

1
3

)
= 1−O

(
g−

1
6

)
.

The proof is similar to the compact case, with two main differences.

• Some points of the surface can have a small injectivity radius because they are
close to a cusp. We estimate the volume of this set of points straightforwardly in
terms of the number of cusps n(g).

• The probabilistic estimates used in the compact case need to be generalised to
the non-compact case. This will require to assume n(g) = o(

√
g) in order to use

[MZ15, Theorem 1.8] and prove the following lemma.

Lemma 4.5. There exists a constant C > 0 such that for any sequence (n(g))g such
that n(g) = o(

√
g), for all large enough g,

1

Vg,n(g)

∑
g1+g2=g

n1+n2=n(g)

Vg1,n1+1Vg2,n2+1 ≤ C
n(g)2

g
·

Proof. By equation (3.10), for large enough g,

1

Vg,n(g)

∑
g1+g2=g

n1+n2=n(g)

Vg1,n1+1Vg2,n2+1

≤ c

Vg,n(g)

∑
g1+g2=g

n1+n2=n(g)

V
g1+bn1+1

2
c,n1+1−2bn1+1

2
cVg2+bn2+1

2
c,n2+1−2bn2+1

2
c

≤ c n(g)2
∑

2G1−3+r1+2G2−3+r2=K
r1,r2∈{0,1}

VG1,r1VG2,r2

Vg,n(g)
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by putting together identical terms, where K = 2g − 4 + n(g).

We now use the equivalent of Vg,n(g) proved in [MZ15, Theorem 1.8]:

Vg,n(g) ∼ c1
(2g − 3 + n(g))!(4π2)2g−3+n(g)

√
g

≥ c2
KK+1

exp(K)
(4π2)K

by Stirling’s formula.

We observe that we can use [MZ15, Theorem 1.2] to find an upper bound on
VG1,r1VG2,r2 because r1, r2 ≤ 1. Then there exists a constant c3 such that for any
G1, G2 and any r1, r2 ∈ {0, 1} satisfying 2G1 − 3 + r1 + 2G2 − 3 + r2 = K,

VG1,r1VG2,r2 ≤ c3
(2G1 − 3 + r1)2G1−3+r1(2G2 − 3 + r2)2G2−3+r2

exp(K)
(4π2)K .

Then the quantity we want to estimate is smaller than

c c3

c2

n(g)2
∑

2G1−3+r1+2G2−3+r2=K
r1,r2∈{0,1}

(2G1 − 3 + r1)2G1−3+r1(2G2 − 3 + r2)2G2−3+r2

KK+1

≤ 4 c c3

c2

n(g)2

K

K∑
k=0

kk(K − k)K−k

KK
≤ 4 c c3

c2

n(g)2

K

K∑
k=0

(
1− k

K

)K
.

This leads to the conclusion because K ∼ 2g and

K∑
k=0

(
1− k

K

)K
≤

K∑
k=0

exp(−k) ≤ 1

1− e−1
·

We can now prove Theorem 4.3.

Proof. Let X be a hyperbolic surface of genus g with n(g) cusps. Let

X−(Lg) := {z ∈ X : InjRadz(X) < Lg}.

and z be an element of X−(Lg). Then, the shortest geodesic arc through z is freely
homotopic to either a closed geodesic on X, like in the compact case, or a cusp. Hence,
the set X−(Lg) can be covered by the union of:

• the (dmax(γ, Lg))-neighbourhoods of the closed geodesics γ of length ≤ 2Lg con-
structed in the compact case

• neighbourhoods of the cusps of X.
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Figure 4.2: The thin part of the cusp represented in a fundamental domain in H.

We know by the compact case that the volume of the neighbourhoods of the closed
geodesics are smaller than 2eLg . Let us now bound the volume of the cusp neighbour-
hood. In order to do so, we compare it with the cuspidal domain

{z = x+ iy |x ∈ [0, 1], y > 0}�{z ∼ z + 1}

as represented in Figure 4.2. Let z = x+ iy be a point of this set. Then, the length of
the geodesic arc based at z freely homotopic to the puncture is the distance between z
and z + 1

dH(z, z + 1) = 2 arcsinh

(
1

2y

)
.

This length is smaller than 2Lg if and only if y ≥ 1/(2 sinh(Lg)), so the volume of the
neighbourhood of the cusp is smaller than∫ 1

0

∫
1

2 sinh(Lg)

dx dy

y2
= 2 sinh(Lg) ≤ eLg .

As a consequence,
Vol(X−(Lg)) ≤ (2N`

X(0, 2Lg) + n(g))eLg

where N`
X(0, 2Lg) is the number of closed geodesics on X of length ≤ 2Lg. Then, the

claim is true on the set

Ag =

{
X ∈Mg,n(g) : N`

X(0, 2Lg) ≤
Mg

2

}
.

Let us bound the probability of the complement of this set using Markov’s inequality:

1− PWP
g (Ag) = PWP

g

(
N`
X(0, 2Lg) >

Mg

2

)
≤ 2

Mg

EWP
g

[
N`
X(0, 2Lg)

]
.

This expectation can be computed using Mirzakhani’s integration formula. In order to
do so, we need to distinguish the various topological situations.
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• The expectation of the number of non-separating closed geodesics of length ≤ 2Lg
is equal to

1

Vg,n(g)

∫ 2Lg

0

Vg−1,n(g)+2(0, . . . , 0, x, x)x dx = O
(
Vg−1,n(g)+2

Vg,n(g)

e2Lg

)
= O

(
e2Lg

)
by equation (3.8) and equation (3.10).

• If the curve is separating, then it separates the surface in two components of
respective signatures (g1, n1 + 1) and (g2, n2 + 1), such that g1 + g2 = g and
n1 + n2 = n(g). Then, the sum of the expectations of the counting functions for
all these cases is equal to

1

Vg,n(g)

∑
g1+g2=g
n1+n2=n

∫ 2Lg

0

Vg1,n1+1(0, . . . , 0, x)Vg2,n2+1(0, . . . , 0, x)x dx

= O

e2Lg
∑

g1+g2=g
n1+n2=n

Vg1,n1+1Vg2,n2+1

Vg,n(g)

 = O
(
n(g)2

g
e2Lg

)
.

by Lemma 4.5.

4.2 The tangle-free hypothesis

The contents of this section are adapted from the article [MT21], a collabora-
tion with Joe Thomas (University of Manchester), to appear in International
Mathematics Research Notices.

In this section, we introduce the tangle-free hypothesis on compact (connected,
oriented) hyperbolic surfaces (without boundary), and explore some of its geometric
implications, with a special emphasis on random surfaces, which we show are almost
optimally tangle-free.

This work follows several recent articles aimed at adapting results on random reg-
ular graphs in both geometry and spectral theory to the setting of random hyperbolic
surfaces – see [Mir13, MP19, GLMST21, Mon21, Tho21, MNP20] for instance. Though
the initial motivation was to provide some useful tools for spectral theory, the results
and techniques developed here are purely geometric. Several of our results are signif-
icant improvements of useful properties of geodesics on compact hyperbolic surfaces,
allowed by the random setting: the length scale at which they apply goes from constant
to logarithmic in the genus.

A key innovation of this article is finding an elementary geometric condition which is
simultaneously easy to prove for random surfaces, and has far-reaching consequences on
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their geometry (notably their geodesics) at a large scale. Similar geometric assumptions
have been made recently by Mirzakhani and Petri [MP19, Proposition 4.5] and Gilmore,
Le Masson, Sahlsten and Thomas [GLMST21]. The use of the tangle-free hypothesis
simplifies and improves the result in [GLMST21], and generalises one consequence of
[MP19, Proposition 4.5] to a larger scale.

The tangle-free hypothesis for hyperbolic surfaces

Let us first define what we mean by tangle-free and contrast it with existing concepts
in the graph theoretic and hyperbolic surface literature. Heuristically speaking, we
shall say that a surface is tangle-free if it does not contain embedded pairs of pants or
one-holed tori with ‘short’ boundaries. More precisely, we make the following definition.

Definition 4. Let X be a compact hyperbolic surface and L > 0. Then, X is said
to be L-tangle-free if all embedded pairs of pants and one-holed tori in X have total
boundary length larger than 2L. Otherwise, X is L-tangled.

To be precise, we emphasise that a pair of pants and a one-holed torus are respec-
tively surfaces of signature (0, 3) and (1, 1), and the embedded surfaces we consider
have totally geodesic boundary. The total boundary length is defined as the sum of the
length of all the boundary geodesics. One should note that we could also have defined
the notion of tangle-free using the maximum boundary length (the length of the longest
boundary geodesic) and the results of this paper would follow through (up to changes
of constants).

It may not be so clear to the reader why we call such a property tangle-free. In
order to clarify this, we prove that, when a surface is tangled, it contains a non-simple
geodesic; that is, a tangled geodesic in the literal sense of the word.

Proposition (Proposition 4.7). Any L-tangled surface contains a self-intersecting geodesic
of length smaller than 2L+ 2π.

Tangle-free graphs

One can motivate the study of this geometric property of surfaces through the medium
of regular graphs. Indeed, the naming of this property is inspired by a similar notion
Bordenave introduced in [Bor20] in order to prove Friedman’s theorem [Fri03] regarding
the spectral gap of the Laplacian on large regular graphs. A graph G = (V,E) is said
to be L-tangle-free if, for any vertex v, the ball for the graph distance dG

BL(v) = {w ∈ V : dG(v, w) ≤ L} ,

contains at most one cycle. This definition might seem quite different to the surface
definition given above, but we shall prove that balls on tangle-free surfaces contain at
most one ‘cycle’ in the following sense.



112 CHAPTER 4. LARGE-SCALE GEOMETRY

Proposition (Proposition 4.14). If a surface X is L-tangle-free, then for any point
z ∈ X, the ball

BL
8
(z) =

{
w ∈ X : dX(z, w) <

L

8

}
is isometric to a ball in the hyperbolic plane or a hyperbolic cylinder.

It is worth noting that in the original proof by Friedman [Fri03], there is also a
notion of ‘supercritical tangle’ in a graph, which are small subgraphs with many cycles.
In a sense, pairs of pants or one-holed tori with small total boundary lengths can be
seen as analogues of these bad tangles for surfaces.

Admissible values of L

Let us now discuss typical values that L can take in Definition 4 both for being tangle-
free and tangled. Throughout, we shall use the notation A = O (B) to indicate that
there is a constant C > 0 such that |A| ≤ C|B| with C independent of all other variables
such as the genus.

It is clear that a surface of injectivity radius r is r-tangle-free, for it has no closed
geodesic of length smaller than 2r. In a deterministic setting, it is hard to say much
more than this.

On the other hand, we know that a hyperbolic surface of genus g admits a pants
decomposition with all boundary components smaller than the Bers constant Bg – see
[Bus92, Chapter 5]. We know that Bg ≥

√
6g− 2 [Bus92, Theorem 5.1.3], and the best

known upper bounds on Bg are linear in g [BS92, Par14]. All surfaces of genus g are
3
2
Bg-tangled. This bound however is rather loose, since it follows from cutting all of

the surface into pairs of pants rather than isolating a single short pair of pants. In light
of this, we in fact prove the following, using a method based on Parlier’s work [Par14].

Proposition (Proposition 4.16). Any hyperbolic surface of genus g is L-tangled for
L = 4 log g +O (1).

Random graphs and surfaces

How tangle-free can a typical surface be? Can L be much larger than the injectivity
radius for a large class of surfaces? An instructive method to answer these questions
is to consider the setting of random surfaces, and to find an L for which most surfaces
are L-tangle-free.

For d-regular graphs with n vertices, sampled with the uniform probability measure
P(d)
n , Bordenave proved [Bor20] that for any real number 0 < a < 1

4
,

P(d)
n (G is (a logd−1(n))-tangle-free) −→

n→+∞
1.

This is a key ingredient in Bordenave’s proof of Friedman’s theorem [Bor20].
We prove that a similar result holds for the Weil–Petersson probability model.
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Theorem (Theorem 4.8). For any real number 0 < a < 1,

PWP
g (X is (a log g)-tangle-free) = 1−O

(
(log g)2

g1−a

)
.

Since any surface of genus g is (4 log g+O (1))-tangled, random surfaces are almost
as tangle-free as possible. We recover the scale log g as in the Benjamini–Schramm
result, which we recall is approximately the value of the diameter of a typical surface
[Mir13]. Therefore, the geometric results in this sections will describe the geometry of
a typical genus g surface at the large scale log g, as aimed in this chapter.

We can note that the tangle-free hypothesis does not exclude the presence of small
closed geodesics (which occur with non-zero probability [Mir13]), but it implies that
these geodesics can never bound a pair of pants or separate a one-holed torus.

Geometric implications of the tangle-free hypothesis

The L-tangle-free hypothesis has various consequences on the local geometry of the sur-
face at a scale (roughly) L, which we explore in Section 4.2.3. This will be particularly
interesting when L is large; in the case of random surfaces notably, where L = a log g
for a < 1. All the results are stated for any L-tangle-free surface, with a general L and
no other assumption, so that they can be directly applied to another setting in which
a tangle-free hypothesis is established.

First and foremost, we analyse the embedded cylinders around simple closed geodesics.
In a hyperbolic surface with no further geometric assumptions to it, the standard collar
theorem [Bus92, Theorem 4.1.1] proves that the collar of width arcsinh

(
sinh (`/2)−1)

around a simple closed geodesic of length ` is an embedded cylinder; moreover, at this
width, disjoint simple closed geodesics have disjoint collars. The width of this determin-
istic collar is optimal and very satisfying for small `. For larger values of ` however, it
becomes very poor. Under the tangle-free hypothesis, we are able to obtain significant
improvements to the collar theorem that remedy this issue at larger scales.

Theorem (Theorem 4.9). On a L-tangle-free hyperbolic surface, the collar of width L−`
2

around a closed geodesic of length ` < L is isometric to a cylinder.

This implies that we can find wide collars around geodesics of size a log g, a < 1,
on random surfaces; as a comparison, the width of the deterministic collar around such
a geodesic decreases like g−

a
2 . By a volume argument, Theorem 4.9 is optimal up to

multiplication of the width by a factor two.
The methodology to prove this result is to examine the topology of an expanding

neighbourhood of the geodesic. Since the two simplest hyperbolic subsurfaces (namely
the pair of pants and one-holed torus) cannot be encountered up to a scale ∼ L due to
the tangle-free hypothesis, the neighbourhood remains a cylinder.

An immediate consequence of this improved collar theorem is a bound on the number
of intersections of a closed geodesic of length ` < L and any other geodesic of length `′.
We prove in Corollary 4.10 that two such geodesics intersect at most 1+ `′

L−` times (and
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we can remove the 1 if the two geodesics are closed). Therefore, two closed geodesics
of length < L

2
do not intersect; Proposition 4.11 furthermore states that the collars of

width L
2
− ` around two such geodesics are disjoint.

As well as the neighbourhood of geodesics, one can look at the geometric conse-
quences that the tangle-free hypothesis has on the neighbourhood of points. To this
end, we explore the set of geodesic loops based at a point on the surface on length scales
up to L. As has already been mentioned above in Proposition 4.14, which establishes a
link between our tangle-free definition and that of graphs, on an L-tangle-free surface,
balls of radius L

8
are isometric to balls in either the hyperbolic plane or a hyperbolic

cylinder. There are several ways to prove this property, some of which are similar to
the proof of the improved collar theorem. In order to present different methods, we
rather deduce it from the following slightly more general result.

Theorem (Theorem 4.12). If z is a point on a L-tangle-free surface, and δz is the
shortest geodesic loop based at z, then any other loop β based at z such that `(δz)+`(β) <
L is homotopic to a power of δz.

Another consequence of Theorem 4.12 is Corollary 4.15, which states that any closed
geodesic of length < L on a L-tangle-free surface is simple. Put together, these obser-
vations imply the following corollary.

Corollary. On a L-tangle-free hyperbolic surface,

1. all closed geodesics of length < L are simple;

2. all closed geodesics of length < L
2

are pairwise disjoint;

3. all closed geodesics of length < L
4

are embedded in pairwise disjoint cylinders of
width ≥ L

4
.

In the random case, this result is an improvement of the very useful collar theorem II
[Bus92, Theorem 4.1.6], which states that all closed geodesics of length < 2 arcsinh 1
on a hyperbolic surface are simple and do not intersect.

Short closed geodesics in random hyperbolic surfaces have been studied by Mirza-
khani and Petri [Mir13, MP19]. One can deduce from [MP19, Proposition 4.5] and
Markov’s inequality that, for any fixed M ,

1− PWP
g (all closed geodesics of length < M are simple) ≤ CM

g

for a constant CM > 0, when we prove that, for any real number 0 < a < 1,

1− PWP
g (all closed geodesics of length < a log g are simple) ≤ C

(log g)2

g1−a

for a constant C > 0. In order to push the proof in [MP19] to a scale log g, one would
need to use strong properties of the Weil–Petersson volumes and deal with technical es-
timates, while our approach is quite elementary in both the geometric and probabilistic
sense.
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As illustrated in Section 3.2.1, the tools used to study random surfaces in the Weil–
Petersson setting require to reduce problems to the study of multicurves. Knowing
that all closed geodesics of length < a

2
log g form a multicurve can be useful to the

understanding of other properties of random surfaces.
Furthermore, McShane and Parlier proved in [MP08] that for any g ≥ 2,

PWP
g (the simple length spectrum has no multiplicities) = 1

where the simple length spectrum of a surface is the list of all the lengths of its simple
closed geodesics. Corollary 4.15 then implies the following.

Corollary 4.6. For any a ∈ (0, 1), if L(X) denotes the length spectrum of X, then

PWP
g (L(X) ∩ [0, a log g] has no multiplicities) = 1−O

(
(log g)2

g1−a

)
.

This could be surprising since, by the work of Horowitz and Randol, for any compact
hyperbolic surface, the length spectrum has unbounded multiplicity [Bus92, Theorem
3.7.1]. However, these high multiplicities are constructed in embedded pairs of pants,
and therefore it is natural that their lengths are large for tangle-free surfaces.

Motivations in spectral theory

To conclude this introduction we will outline the connection between the geometry of
hyperbolic surfaces and their spectral theory and in particular discuss how the tangle-
free hypothesis and its implications on the geometry of surfaces on log g scales, which
is a crucial scale in spectral theory, could be used to tackle some open problems in this
area. As promised, let us first return to the relation of the tangle-free hypothesis with
spectral graph theory and contrast this with that of surfaces.

In spectral theory, when studying large-scale limits (n→ +∞ for a graph, g → +∞
for a surface), it is important to know that the small-scale geometry of the object will
not affect the spectrum. Often, a simple assumption to avoid this is to assume the
injectivity radius to be large.

Unfortunately, random regular graphs and surfaces have an asymptotically non-
zero probability of having a small injectivity radius (see [Wor81b] and [Mir13, Theorem
4.2]). As a consequence, in both cases, if we want to prove results true with probability
approaching 1 in the large-scale limit, one needs to impose weaker and more typical
geometric conditions.

For instance, Brooks and Lindenstrauss [BL13] and Brooks and Le Masson [BLM20]
studied eigenfunctions on regular graphs of size n → +∞, under assumptions on the
number of cycles up to a certain length L. This parameter L can always be taken to be
the injectivity radius, but in the case of random graphs, it can be increased to be of order
log n. In a recent article of Gilmore, Le Masson, Sahlsten and Thomas [GLMST21],
a similar geometric hypothesis on the number of geodesic loops shorter than a scale
L based at each point is made, in order to control the Lp-norms of eigenfunctions of
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the Laplacian on hyperbolic surfaces. The authors prove it holds for random surfaces
of high genus g at a scale L = c log g, but the proof provides no explicit value of the
constant c > 0.

This limitation could be seen as originating from the methodology used to study
the geometry of the surfaces. In essence, the authors prove that the loop condition
is implied by a geometric condition, which is typical. This condition however is quite
complex, and both the proof of its sufficiency and typicality are rather technical, leaving
the local geometry of the random surfaces that are selected to remain quite opaque.

It follows from Corollary 4.13 that the constant c in [GLMST21] can be taken to
be any value < 1

4
. In turn, this improves (and makes precise) the rate of convergence

of the probability for which the Lp-norm estimates in [GLMST21] hold. This is rather
demonstrative of the capabilities of the tangle-free geometric condition allowing for a
firm grasp over log g-scale geometries for spectral theoretic purposes.

Outline of the section

The section is organised as follows:

• Section 4.2.1: tangled surfaces have tangled geodesics.

• Section 4.2.2: random surfaces are (a log g)-tangle-free for any a < 1.

• Section 4.2.3: geometric consequences of the tangle-free hypothesis.

• Section 4.2.4: any surface of genus g is (4 log g +O (1))-tangled.

4.2.1 Tangled surfaces have tangled geodesics

The aim in this section is to prove that being tangled implies having a tangled geodesic
- that is to say a non-simple closed geodesic of length ≤ 2L+O (1).

Proposition 4.7. Let X be a compact hyperbolic surface and L > 0. Assume that X
is L-tangled. Then, there exists a closed geodesic γ in X of length smaller than 2L+2π
with one self-intersection.

The geodesic we construct is what is called a figure eight. Any non-simple geodesic
on a hyperbolic surface has length greater than 4 arcsinh 1 ≈ 3.52 . . ., and this result is
sharp (see [Bus92, Theorem 4.2.2]).

Proof. It suffices to prove that there is such a geodesic in any pair of pants or one-holed
torus of total boundary length smaller than 2L.

Let us first consider a hyperbolic pair of pants of boundary lengths `1, `2, `3, such
that `1 + `2 + `3 < 2L. We construct a closed curve with one self-intersection as
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(a) for a pair of pants (b) for a one-holed torus

Figure 4.3: Construction of a short self-intersecting geodesic.

represented in Figure 4.3a. By [Bus92, Formula 4.2.3], which can be proven using the
common perpendicular `⊥,

cosh

(
`(γ)

2

)
= 2 cosh

(
`1

2

)
cosh

(
`3

2

)
+ cosh

(
`2

2

)
≤ 3 eL.

Since cosh x ≥ ex

2
, we deduce that the length of γ is smaller than 2L+ 2 log 6.

We use a different proof in the one-holed torus case, because we do not have access
to several small geodesics straight away. Let us study a one-holed torus T of boundary
length ` ≤ 2L. Let w > 0, and Cw be the w-neighbourhood of the boundary geodesic

Cw = {z ∈ T : d(z, ∂T ) < w}.

By the collar theorem [Bus92, Theorem 4.1.1], when w is small enough, Cw is a half-
cylinder with Fermi coordinates (ρ, t), in which the hyperbolic metric is ds2 = dρ2 +
cosh2 ρ dt2. This isometry has to break down at some point, because the area of the
one-holed torus is 2π, and as long as the isometry holds

Vol(Cw) =

∫ `

0

∫ w

0

cosh ρ dρ dt = ` sinhw ≤ 2π. (4.5)

We pick w to be the supremum of the widths for which the isometry holds. By conti-
nuity, w satisfies inequality (4.5). Up until w, the length `(βw′) of the inside boundary
βw′ = ∂Cw′ \ ∂T of the half-collar satisfies

`(βw′) = ` coshw′, (4.6)

which by continuity still holds for the supremum width w. Put together, equations
(4.5) and (4.6) imply that

`(βw) = `

√
1 + sinh2(w) ≤ `

√
1 +

4π2

`2
≤ 2L+ 2π.

The reason why the isometry ceases at w has to be that the boundary βw self-intersects.
Let z be a self-intersection point. This intersection point allows us to create a pants
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decomposition of the handle (see Figure 4.3b), as well as find a closed geodesic γ which
is freely homotopic to the closed curve βw. We can then conclude by observing that the
length of γ is less than `(βw) ≤ 2L+ 2π and γ has one self-intersection because it is the
figure eight geodesic constructed in the pair of pants case projected to the one-holed
torus.

4.2.2 Random surfaces are (a log g)-tangle-free

In this section, we will show that, for any 0 < a < 1, typical surfaces of genus g
are (a log g)-tangle-free. By typical we mean in the probabilistic sense for the Weil–
Petersson model of random surfaces.

The proof relies on Mirzakhani’s interation formula (Theorem 3.8) together with
the volume estimates listed in Section 3.2.3.

Theorem 4.8. For any real number 0 < a < 1,

PWP
g (X is (a log g)-tangle-free) = 1−O

(
(log g)2

g1−a

)
.

Proof. Let us list all the topological types of embedded one-holed tori or pair of pants
in a genus g surface (see Figure 4.4):

(i) a curve separating a one-holed torus;

(ii) three curves cutting Sg into a pair of pants and a component Sg−2,3;

(iii) three curves cutting Sg into a pair of pants and two components Sg1,1 and Sg2,2

such that g1 + g2 = g − 1;

(iv) three curves cutting Sg into a pair of pants and three connected components Sg1,1,
Sg2,1 and Sg3,1 with 1 ≤ g1 ≤ g2 ≤ g3 and g1 + g2 + g3 = g.

Figure 4.4: The different topological ways to embed a one-holed torus or pair of pants
in a surface of genus g.

For any topological situation, we will consider a multicurve α on the base surface
Sg realising the topological configuration and study the counting function

Nα
L (X) = #{β ∈ O(α) : `X(β) ≤ 2L},
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where the length of a multi-curve is defined as the sum of its components. Then, the
probability of finding a component in the topological situation α of total boundary
length ≤ 2L can be bounded by Markov’s inequality:

PWP
g (Nα

L (X) ≥ 1) ≤ EWP
g [Nα

L (X)] .

We observe that Nα
L (X) is a geometric function, and its expectation can therefore be

computed using Mirzakhani’s integration formula (3.8). This reduces the problem to
estimating integrals with Weil–Petersson volumes, which we will now detail.

In case (i), the integral that appears is∫ 2L

0

V1,1(`)Vg−1,1(`) ` d`.

From [NN98], it is known that V1,1(`) = `2

24
+ π2

6
. Moreover, by equation (3.8),

`Vg−1,1(`) ≤ 2e
`
2Vg−1,1.

It follows that the probability is smaller than

Vg−1,1

Vg

∫ 2L

0

2

(
`2

24
+
π2

6

)
e
`
2 d` = O

(
Vg−1,1

Vg
L2eL

)
= O

(
(log g)2

g1−a

)
where the last bound is deduced from equations (3.10) and (3.12) and taking L = a log g.

In case (ii), the integral that appears is

1

Vg

∫∫∫
0≤`1+`2+`3≤2L

V0,3(`1, `2, `3)Vg−2,3(`1, `2, `3) `1`2`3 d`1 d`2 d`3.

Due to the fact that V0,3(`1, `2, `3) = 1 and by equation (3.8), we need to estimate

Vg−2,3

Vg

∫∫∫
0≤`1+`2+`3≤2L

exp

(
`1 + `2 + `3

2

)
d`1 d`2 d`3 = O

(
(log g)2

g1−a

)
by equations (3.10) and (3.12).

Let us now bound the sum of all the topological situations of case (iii). By the same
manipulations, we obtain that the probability is

O

(
L2eL

Vg

∑
g1+g2=g−1

Vg1,1Vg2,2

)
= O

(
(log g)2

g1−a
Vg−1,1

Vg

)
= O

(
(log g)2

g2−a

)
by equation (3.11) and then equations (3.10) and (3.12).

Finally, in the last case we have to estimate∑
g1+g2+g3=g
1≤g1≤g2≤g3

Vg1,1Vg2,1Vg3,1

=

b g−2
3
c∑

g1=1

Vg1,1

∑
g2+g3=g−g1

Vg2,1Vg3,1 ≤ C0

b g−2
3
c∑

g1=1

Vg1,1Vg−g1,0

g − g1
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where C0 is the constant from equation (3.11). We observe that g − g1 ≥ 2
3
g and use

equation (3.12) to conclude that the probability is

O

(log g)2

Vgg2−a

b g−2
3
c∑

g1=1

Vg1,1Vg−g1,1

 = O
(

(log g)2

g3−a

)

by equation (3.11).

Remark. In the cases (i), (iii) and (iv), there is a separating geodesic of length≤ 2a log g.
Therefore, we could have bounded these probabilities by the probability of having a
separating geodesic of length ≤ 2a log g, which has been estimated by Mirzakhani in
[Mir13, Theorem 4.4]. This approach yields the same end result, but the authors decided
to detail the four cases for the sake of self-containment. Furthermore, this more detailed
study allows us to see that the most likely cases are cases (i.) and (ii.), and therefore
the first length at which the surface is tangled will typically be obtained by one of these
two topological situations.

4.2.3 Geometry of tangle-free surfaces

The aim of this section is to provide information about geodesics and neighbourhoods of
points on tangle-free surfaces. The results will be expressed in terms of an arbitrary L-
tangle-free surface X, but can also been seen as result that are true with high probability
for L = a log g, a < 1 due to Theorem 4.8.

An improved collar theorem

Theorem 4.9. Let L > 0, and X be a L-tangle-free hyperbolic surface. Let γ be a
simple closed geodesic of length ` < L. Then, for w := L−`

2
, the neighbourhood

Cw(γ) = {z ∈ X : d(z, γ) < w}

is isometric to a cylinder.

The collar theorem [Kee74, Bus92] is a similar result, but in this case the width
is arcsinh

(
sinh(`/2)−1). We recall that, in the random case, for a < 1, with high

probability, we can take L = a log g. This result therefore is a significant improvement
for geodesics of length b log g, for 0 < b < a. We obtain a collar of width w = a−b

2
log g,

which is expanding with the genus, as opposed to the deterministic collar of width of
size ≈ g−

b
2 .

For very short geodesics, the width of this new collar is ' a
2

log g. It might seem
weaker than the deterministic collar, which is of width ' − log(`). However, by Theo-
rem 4.2 in [Mir13], the injectivity radius of a random surface is greater than g−

a
2 with

probability 1−O (g−a). Under this additional probabilistic assumption, the two collars
are of similar sizes.
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Proof. For small enough w, the neighbourhood Cw(γ) is a cylinder, with two boundary
components γ±w . Let us assume that, for a certain w, the topology of the neighbourhood
changes. There are two ways for this to happen (and both can happen simultaneously)
– see Figure 4.5.

(A) One boundary component, γ+
w or γ−w , self-intersects.

(B) The two boundary components γ+
w and γ−w intersect one another.

(a) one side self-intersects (b) the two sides intersect one another

Figure 4.5: Illustration of the ways the isometry breaks down when expanding a cylinder
around the geodesic γ.

In both cases, let z ∈ X denote one intersection point. Since the distance between
z and γ is w, there are two distinct geodesic arcs c1, c2 of length w, going from z
to points of γ, and intersecting γ perpendicularly. Both c1 and c2 are orthogonal to
the boundaries of the cylinder and the two boundaries are tangent to one another by
minimality of the width w. As a consequence, the curve c = c−1

1 c2 is a geodesic arc.
The regular neighbourhood of the curves γ and c has Euler characteristic −1. There

are two possible topologies for this neighbourhood.

• If it is a pair of pants, then it has three boundary components. Neither of them
is contractible on the surface X. Indeed, one component is freely homotopic to γ,
and the two others to c and a portion of γ, which are geodesic bigons. Therefore,
when we replace the boundary components of the regular neighbourhood by the
closed geodesic in their free homotopy classes, we obtain a pair of pants or a
one-holed torus (if two of the boundary components are freely homotopic to one
another), of total boundary length smaller than 2`+ 4w.

• Otherwise, it is a one-holed torus. Its boundary component is not contractible,
because there is no hyperbolic surface of signature (1, 0). Therefore, the closed
geodesic in its free homotopy class separates a one-holed torus with boundary
length smaller than 2`+ 4w from X.

In both cases, by the tangle-free hypothesis, 2L < 2`+4w, which allows us to conclude.
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Remark. Let Ag ⊂Mg be the event “the surface has a simple closed geodesic of length
between 1 and 2”. By work of Mirzakhani and Petri [MP19],

PWP
g (Ag) −→

g→+∞
1− e−λ with λ =

∫ 2

1

et + e−t − 2

t
dt > 0,

so this event has asymptotically non-zero probability.
Let X be an element of Ag which is also (a log g)-tangle-free, and let γ be a closed

geodesic on X of length ` ∈ [1, 2]. Then, the collar Cw(γ) given by Theorem 4.9 has
volume

Vol(Cw(γ)) = 2` sinhw ≥ 2 sinh
(a

2
log g − 1

)
∼ g

a
2 as g → +∞.

However, Vol(Cw(γ)) ≤ VolX = 2π(2g − 2). This leads to a contradiction for g ap-
proaching +∞ as soon as a > 2. Hence, for large g, the elements of Ag are (a log g)-
tangled for a > 2:

lim sup
g→+∞

PWP
g (X is (a log g)-tangled) ≥ lim

g→+∞
PWP
g (Ag) > 0.

Therefore, for all a > 2, random surfaces do not have high probability of being (a log g)-
tangle-free.

By taking a close to but larger than 1, this same line of reasoning and the fact
that we know surfaces to be (a log g)-tangle-free with high probability implies that the
improved collar cannot be much larger than L − `. As a consequence, our result is
optimal up to multiplication by 2.

Number of intersections of geodesics

A consequence of this improved collar theorem is a bound on the number of intersections
of a short closed geodesic with any other geodesic.

Corollary 4.10. Let L > 0, and X be a L-tangle-free hyperbolic surface.
Let γ be a simple closed geodesic of length < L on X. Then, for any geodesic γ′

transverse to γ, the number of intersections i(γ, γ′) between γ and γ′ satisfies

i(γ, γ′) ≤ `(γ′)

L− `(γ)
+ 1.

In the case where γ′ is also closed, then

i(γ, γ′) ≤ `(γ′)

L− `(γ)
·

In particular, if `(γ) + `(γ′) < L, then γ and γ′ do not intersect.
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Proof. By Theorem 4.9, γ is embedded in an open cylinder C of width w = L−`(γ)
2

.
Let us parametrise the geodesic γ′ : [0, 1]→ X. The set of times when γ′ visits the

cylinder can be decomposed as

k⊔
i=1

(t−i , t
+
i ), 0 ≤ t−1 < t+1 ≤ . . . ≤ t−k < t+k ≤ 1,

as respresented in Figure 4.6. The restriction ci of γ′ between t−i and t+i is a geodesic in

Figure 4.6: Illustration of the proof of Corollary 4.10.

the cylinder C, transverse to the central geodesic γ. Therefore, if ci intersects γ, then
it does at most once. Let I ⊂ {1, . . . , k} be the set of i such that ci intersect γ. We
have that i(γ, γ′) = #I ≤ k.

We assume that #I ≥ 2 (otherwise their is nothing to prove). Any geodesic in-
tersecting the central geodesic transversally travels through the entire cylinder, and is
therefore of length greater than 2w. As a consequence, for any i ∈ I different from 1
and k, `(ci) ≥ 2w. Also, if i = 1 or k belongs in I, then `(ci) ≥ w. This leads to our
claim, because

(i(γ, γ′)− 1)(L− `(γ)) = (#I − 1) · 2w ≤
∑
i∈I

`(ci) ≤ `(γ′).

The case when the curve γ′ is closed can be obtained observing that, in this case,
`(c1) and `(ck) also are greater than 2w (when 1 or k belongs in I).

Like the collars from the usual collar theorem, the collars of two small enough
distinct geodesics are disjoint.

Proposition 4.11. Let L > 0, and X be a L-tangle-free hyperbolic surface. Let γ, γ′

be two distinct simple closed geodesics such that `(γ) + `(γ′) < L. Then, the distance
between γ and γ′ is greater than L− `(γ)− `(γ′).

In particular, if `(γ), `(γ′) < L
2

, then the collars of width L
2
− `(γ) around γ and

L
2
− `(γ′) around γ′ are two disjoint embedded cylinders.
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Figure 4.7: Illustration of the proof of Proposition 4.11

Proof. We already know, owed to Corollary 4.10, that γ and γ′ do not intersect. Let c be
a length-minimising curve with one endpoint on γ and the other on γ′ (see Figure 4.7).
Then, by minimality, c is simple and only intersects γ and γ′ at is endpoints. The
regular neighbourhood R of γ, γ′ and c is a topological pair of pants of total boundary
length less than 2(`(γ)+`(γ′)+`(c)). Since γ and γ′ are non-contractible and not freely
homotopic to one another, the third boundary component is not contractible and R
corresponds to an embedded pair of pants or one-holed torus on X. By the tangle-free
hypothesis, `(γ) + `(γ′) + `(c) ≥ L, and therefore the distance between γ and γ′ is
greater than L− `(γ)− `(γ′). This implies our claim.

Short loops based at a point

Let us now study short loops based at a point on a tangle-free surface.

Theorem 4.12. Let L > 0, and X be a L-tangle-free hyperbolic surface. Let z ∈ X,
and let δz be the shortest geodesic loop based at z.

Let β be a (non necessarily geodesic) loop based at z, such that `(β) + `(δz) < L.
Then β is homotopic with fixed endpoints to a power of δz.

The result is empty if the injectivity radius of the point z is greater than L
2
. The

“shortest geodesic loop” δz is not necessarily unique. It will be as soon as the injectivity
radius at z is smaller than L

4
. More precisely, we directly deduce from Theorem 4.12 the

following corollary, which was used in [GLMST21] for random surfaces (with a length
L = a log g, but the value of a was not explicit). Note the similarity of this result to
the classical Margulis lemma [Rat19]. In particular, we obtain an explicit constant for
the Margulis lemma in the case of tangle-free surfaces.

Corollary 4.13. Let L > 0, and X = H�Γ be an L-tangle-free hyperbolic surface.
Then, for any z ∈ H, the set {T ∈ Γ : dH(z, T · z) < L

2
} is:

• reduced to the identity element (when the injectivity radius at z is ≥ L
4

),

• or included in the subgroup 〈T0〉 generated by the element T0 ∈ Γ corresponding
to the shortest geodesic loop through z.
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We recall that any compact hyperbolic surface is isometric to a quotient of the
hyperbolic plane H by a Fuchsian co-compact group Γ ⊂ PSL2(R) – see [Kat92] for
more details.

We could prove Theorem 4.12 using the same method as we used for Theorem 4.9
and Corollary 4.10, expanding a cylinder around δz. However, our initial proof used a
different method, which we decided to present here, in order to expose different ways
to use the tangle-free hypothesis.

(a) Case k = 0. (b) Case k > 0.

Figure 4.8: Illustrations of the proof of Theorem 4.12.

Proof of Theorem 4.12. By replacing β by a new curve in its homotopy class, we can
assume that β has a finite number of self-intersections, and of intersections with δz,
while still satisfying the length condition.

We now prove this result by induction on the number of self-intersections k ≥ 0 of β.
We start with the base case of k = 0 so that β is simple. We parametrise β : [0, 1]→ X.
Let 0 = t0 < t1 < . . . < tI = 1 be the times when β meets δz.

Let 0 ≤ i < I, and βi be the restriction of β to [ti, ti+1] – see Figure 4.8a. Then, the
regular neighbourhood R of δz and βi has Euler characteristic −1, and total boundary
length ≤ 2(`(δz) + `(βi)) < 2L. If R is a topological one-holed torus, then by the
tangle-free hypothesis, its boundary component is contractible, which is impossible as
there is no hyperbolic surface of signature (1, 0).

Therefore, R is a topological pair of pants. By the tangle-free hypothesis, one of its
boundary components is contractible. It can not be the component corresponding to
δz, so it is another one. Hence, βi is homotopic with fixed endpoints to a portion δ

(i)
z

of δz.
As a consequence, β = β0 . . . βI−1 is homotopic with fixed endpoints to the product

c = δ(0)
z δ(1)

z . . . δ(I−1)
z .

c goes from z to z following only portions of δz. Therefore, c is homotopic with fixed
endpoints to a power δjz of δz.

We now move forward to the case k > 0. We assume the result to hold for any
smaller k. The idea is to find a way to cut β into smaller loops on which to apply the
induction hypothesis; the construction is represented in Figure 4.8b.
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Let ` = `(β). We pick a length parametrisation of β : R�`Z → X such that
β(0) = z. We look for the first intersection point of β, starting a 0, but looking in both
directions:

`+ = min{t ≥ 0 : ∃s ∈ (t, `) such that β(s) = β(t)}
`− = min{t ≥ 0 : ∃s ∈ (t, `) such that β(−s) = β(−t)}.

Up to a change of orientation of β, we can assume that `+ ≤ `−. Then, we set

t = max{s ∈ (`+, `) : β(s) = β(`+)}

to be the last time at which β visits β(`+), so that the restriction of β to [`+, t] is a
loop β+. The curve has no self-intersection between `− `− and `, so t ≤ `− `−. Then,
if we denote by c+, c and c− the respective restrictions of β to [0, `+], [t, ` − `−] and
[` − `−, `], we can write β = c+ β+ c c−, which is homotopic with fixed endpoints to
(c+ β+ c

−1
+ ) (c+ c c−).

Let us apply the induction hypothesis to the two loops c+ β+ c
−1
+ and c+ c c−. It will

follow that they, and hence β, are homotopic with fixed endpoints to a power of δz.
β+ is a sub-loop of β. As a consequence, c+ c c− has less self-intersections than

β, and hence strictly less than k. Furthermore, it is shorter, so it satisfies the length
hypothesis `(c+ c c−) + `(δz) < L. So we can apply the induction hypothesis.

c+ is simple and does not intersect β+ (except at its endpoint). As a consequence,
we can find a curve b homotopic to c+ β+ c

−1
+ with as many self-intersections as β+. β+

is a strict sub-loop of β, so this intersection number is strictly smaller than k. The
length of b can be taken as close as desired to that of c+ β+ c

−1
+ . Moreover,

`(c+ β+ c
−1
+ ) = 2`+ + `(β+) ≤ `+ + `− + `(β+) ≤ `(β)

so b can be chosen to satisfy the length hypothesis `(δz) + `(b) < L, and we can apply
the induction hypothesis to it.

Neighbourhood of a point and graph definition

Now that we know about short loops based at a point, we can understand the geometry
(and topology) of balls on a tangle-free surface.

Proposition 4.14. Let L > 0, and X be a L-tangle-free hyperbolic surface. For a point
z in X, let BL

8
(z) :=

{
w ∈ X : dX(z, w) < L

8

}
. Then, BL

8
(z) is isometric to a ball in

either the hyperbolic plane (whenever the injectivity radius at z is ≥ L
8

) or a hyperbolic
cylinder.

In the second case, since the injectivity radius at z is greater than L
8
, the ball BL

8
(z)

is not contractible on X; it is therefore homeomorphic to a cylinder (see Figure 4.9).
In a sense, this corollary proves that our notion of tangle-free implies the natural

translation of the notion of tangle-free for graphs. Indeed, the ball BL
8
(z) has either
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Figure 4.9: Illustration of the proof of Proposition 4.14 in the cylinder C. Neighbour-
hoods of points of small injectivity radius on a tangle-free surface are isometric to balls
in cylinders, like B0.

no non-contractible geodesic loop, or only one (and its iterates). We could have picked
Proposition 4.14 to be a definition for tangle-free, but we consider the pair of pants
definition to be both convenient to use and natural in the context of hyperbolic geometry
and the Weil–Petersson model.

Proof. In order to prove this result, we will work in the universal cover H of X. Let us

write X = H�Γ, for a co-compact Fuchsian group Γ.

Let z be a point on X of injectivity radius smaller than L
8

(otherwise, the conclusion
is immediate). Then, the shortest geodesic loop β based at z satisfies `(β) < L

4
.

Let z̃ ∈ H be a lift of z, β̃ be a lift of β starting at z̃, and B̃ be the ball of radius
L
8

around z̃ in H. Let Tβ ∈ Γ be the covering transformation corresponding to β. The

quotient C = H�〈Tβ〉 is a hyperbolic cylinder. The ball B̃ is projected on a ball B0 on

C. Let us prove that the projection from B0 on C to B on X is an isometry.

In order to do so, we shall establish that for any w̃ ∈ B̃, the set of transformations
T ∈ Γ such that T · w̃ ∈ B̃ is included in 〈Tβ〉. Since any two points in B̃ are at a
distance at most L

4
< L

2
, this will follow from proving

ΓL(w̃) :=

{
T ∈ Γ : dH(w̃, T · w̃) <

L

2

}
⊂ 〈Tβ〉.

Let c be the shortest path from w̃ to z̃. The path c β̃ (Tβ ◦ c−1) is a path from w̃ to
Tβ · w̃. Its length is 2`(c) + `(β) < 2 × L

8
+ L

4
= L

2
. As a consequence, Tβ belongs in

ΓL(w̃). Then, ΓL(w̃) is not reduced to {id}. By Corollary 4.13, it is included in a cyclic
subgroup 〈T0〉. Tβ hence is a power of T0, but Tβ is primitive. Therefore, Tβ = T±1

0 ,
and the conclusion follows.

Short geodesics are simple

Corollary 4.15. Let L > 0, and X be a L-tangle-free hyperbolic surface. Any primitive
closed geodesic on X of length < L is simple.
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This consequence of Theorem 4.12 can also be deduced from the fact that the
shortest non-simple primitive closed geodesic on a compact hyperbolic surface is a
figure eight geodesic [Bus92, Theorem 4.2.4], which is embedded in a pair of pants or
one-holed torus.

Proof. Let us assume by contradiction that γ is not simple; we can then pick an inter-
section point z. This allows us to write γ as the product of two geodesic loops γ1, γ2

based at z. Since `(γ1) + `(γ2) < L, one of them is < L/2. Up to a change of notation,
we take it to be γ1.

Let δz be the shortest geodesic loop based at z. By definition, `(δz) ≤ `(γ1). So γ1

and γ2 both satisfy the length hypothesis of Theorem 4.12:

`(γ1) + `(δz) ≤ 2`(γ1) < L

`(γ2) + `(δz) ≤ `(γ) < L.

Therefore, they are both homotopic with fixed endpoints to powers of δz, which implies
γ is too. So γ is freely homotopic to a power j of the simple closed geodesic γ0 in the
free homotopy class of δz. By uniqueness, γ = γj0. γ is primitive, so j = 0 or 1. But
γ is not contractible (so j 6= 0) and not simple (so j 6= 1): we reach a contradiction,
which allows us to conclude.

Remark. Put together, Corollary 4.15 and 4.10 imply that all primitive closed geodesics
of length < L

2
are simple and disjoint. Any such family of curves has cardinality at

most 3g− 3. But we know that the number of primitive closed geodesics of length < L
2

on a fixed closed surface is asymptotic to 2
L
e
L
2 as L → +∞ [Hub59, Bus92]. This can

be seen as another indicator that, if X is L-tangle-free of large genus, then we expect
L to be at most logarithmic in g.

4.2.4 Any surface of genus g is (4 log g +O (1))-tangled

We recall that any surface is L-tangled for L = 3
2
Bg, the Bers constant, because it can be

entirely decomposed in pairs of pants of maximal boundary length smaller than Bg. The
best known estimates on the Bers constant Bg are linear in the genus g [BS92, Par14],
which is pretty far off the c log g we obtained for random surfaces. This is not a surprise,
because in order to prove that a surface is tangled, we only need to find one embedded
pair of pants or one-holed torus. In Buser and Parlier’s estimates on Bg [Bus92, Par14],
the pair of pants decomposition is constructed by successively exhibiting short curves
on the surface; the first ones are of length ' log g, but as the construction goes on, and
we find 2g − 2 curves to entirely cut the surface, a linear factor appears.

In our case, we only need to stop the construction as soon as we manage to separate
a pair of pants. Following Parlier’s approach in [Par14] to bound the Bers constant, we
prove the following.

Proposition 4.16. There exists a constant C > 0 such that, for any g ≥ 2, any
compact hyperbolic surface of genus g is X is L-tangled for L = 4 log g + C.
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This goes to prove that random hyperbolic surfaces are almost optimally tangle-free,
despite the possibility of having a small injectivity radius.

The proof relies on the following two Lemmas, which are all used by Parlier [Par14].
Lemma 4.17, due to Bavard [Bav96], allows us to find a small geodesic loop on our
surface.

Lemma 4.17. Let X be a hyperbolic surface of genus g. For any z ∈ X, the length of
the shortest geodesic loop through z is smaller than

2 arccosh

(
1

2 sin π
12g−6

)
= 2 log g +O (1) .

Some problems will arise in the proof if the geodesic loop we obtain using this
result is too small. These difficulties can be solved by assuming a lower bound on the
injectivity radius of the surface; for instance, for random surfaces, with high probability,
one can assume that the injectivity radius is bounded below by g−ε for a ε > 0 [Mir13].
However, such an assumption makes the final inequality weaker.

Another way to fix this issue, used in [Par14], is to expand all the small geodesics,
and by this process obtain a new surface, with an injectivity radius bounded below,
and in which the lengths of all the curves are longer. For our purposes, we only need
to expand one curve. This is achieved by the following Lemma.

Lemma 4.18 (Theorem 3.2 in [Par05]). Let Sg,n be a base surface with n > 0 boundary
components. Let (X, f) ∈ Tg,n(`1, . . . , `n) and ε1, . . . , εn ≥ 0. Then, there exists a
marked hyperbolic surface (X̃, f̃) in Tg,n(`1 + ε1, . . . , `n + εn) such that, for any closed
curve c on the base surface Sg,n, `X(c) ≤ `X̃(c).

We are now able to prove the result.

Proof. Let γ be the systole of X which is necessarily simple. We cut the surface X
along this curve, and obtain a (possibly disconnected) hyperbolic surface Xcut with
two boundary components. By the extension Lemma (applied to both components
separately if need be), there exists a surface X+

cut such that:

• the boundary components β1, β2 in X+
cut are of length 1 ≤ ` ≤ 2 log g +O (1).

• for any closed curve c not intersecting γ, `Xcut(c) ≤ `X+
cut

(c).

We shall find a pair of pants in X+
cut, and use the relationship between lengths in X

and X+
cut to conclude.

For w > 0, let us consider the w-neighbourhood of one component β1 of the boundary
of X+

cut

Cw(β1) = {z ∈ X+
cut : d(z, β1) < w}.

For small enough w, Cw(β1) is a half-cylinder. However, there is a w at which this
isometry stops. This w can be bounded by a volume argument: as long as Cw is a
half-cylinder,

Vol(Cw(β1)) = ` sinhw ≤ VolX = 2π(2g − 2).
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However, ` ≥ 1. It follows that w ≤ log g +O (1).
There are two reasons for this isometry to stop.

• The half-cylinder self-intersects inside the surface (see Figure 4.5a). Then, one can
construct an embedded pair of pants on X+

cut, of total boundary length ≤ 2`+4w.
This pair of pants will also be one on X, with shorter boundary components.

• The half-cylinder reaches the boundary of X+
cut. It can only do so by intersecting

the component β2. Then, one can construct an embedded pair of pants on X+
cut

of boundaries shorter than `, `, and 2` + 2w, which corresponds to a one-holed
torus on X, of boundary shorter than 2` + 2w (see Figure 4.5b, but expanding
only a half-cylinder).

We can conclude that the surface X is L-tangled, for L = `+2w ≤ 4 log g+O (1).

4.3 Generalisation of the tangle-free hypothesis

In this section, we introduce a new notion of tangle-freeness, which generalises the one
presented in Section 4.2. Our main objective is to define a weaker and more typical
notion, of probability converging arbitrarily fast to one in the high-genus limit.

4.3.1 Motivation, definition and results

Probabilistic motivation The notion of tangle-free hyperbolic surface has proven
to be very useful in a geometric viewpoint, allowing to improve many classical tools of
hyperbolic geometry such as the collar lemmas. However, the fact that the probability
of being (a log g)-tangle-free converges rather slowly to one (at a rate 1/g1−a > 1/g)
can be a significant limitation when trying to use it.

Indeed, if one was to try and estimate the expectation of a positive random variable
Fg : Mg → R using a geometric hypothesis Ag ⊂ Mg of high probability, they could
for instance write

EWP
g [Fg(X)] ≤ EWP

g

[
Fg(X)1Ag(X)

]
+ ‖Fg‖∞(1− PWP

g (Ag)).

If the random variable Fg takes large values on a set of small probability, then in order
for this estimate to provide satisfying results, one needs to be able to pick a set Ag
of probability very close to one. These issues have been encountered when trying to
use the tangle-free hypothesis to recover the result [MP19, Proposition 4.5] and when
trying to prove that λ1 ≥ 1

4
− ε typically (see Section 6.3).

Definition and probabilistic estimate In order to remedy these issues, let us
introduce a new notion of tangle-free surface, which is weaker than the one presented
in Section 4.2 and hence has higher probability.
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Definition 5. Let N ≥ 1 be an integer and L be a positive real number.
A compact hyperbolic surface X is (N,L)-tangled if there exists an embedded con-

nected surface S ⊂ X with geodesic boundary such that:

• the Euler characteristic of S is −N

• the total boundary length of S is smaller than (N + 1)L.

Otherwise, X is (N,L)-tangle-free.

The definition of tangle-freeness from Section 4.2 corresponds to the case N = 1.
Let us estimate the probability of being (N,L)-tangle-free for the large scale L = log g
and a fixed N .

Theorem 4.19. For any integer N > 1, there exists a constant CN > 0 such that

1− PWP
g (X is (N, log g)-tangle-free) ≤ CN

(log g)3N

g
N−1

2

·

The power g−
N−1

2 in this estimate can solve the issues that were raised at the be-
ginning of the section: the new parameter N provides us with an additional degree
of freedom, allowing us to pick a probabilistic assumption with an arbitrarily good
polynomial rate of convergence to 1.

Geometric consequences Let us now describe the geometry of (N,L)-tangle-free
surfaces. Unfortunately, this new hypothesis is significantly weaker, and its geometric
implications are less striking.

For instance, one can prove that the length of the figure-eight geodesic in a pair
of pants with three boundaries of length ε → 0+ goes to 2 arccosh(3) ≈ 3.52... (see
[Bus92, Theorem 4.2.2]). As a consequence, a (2, log g)-tangle-free surface can contain
non-simple closed geodesics of constant length. Furthermore, by going around one of
the sides of the figure eight repeatedly, we can even find short closed geodesics with
many self-intersections in some (2, log g)-tangle-free surfaces.

However, our aim when introducing this generalisation of the tangle-free hypothesis
was to use it to prove Friedman’s theorem for random surfaces. We do not necessarily
expect to need very precise geometric information in order to do so, but mostly to be
able to describe long geodesics, of length A log g for A� 1 (the motivation behind this
choice of regime is detailed in Section 6.1.2). This will be achieved as a consequence of
the following result, which in a sense bounds the topology of the surface filled by a ball of
radius L/4 and hence generalises Proposition 4.14 to this new notion of tangle-freeness.

Theorem 4.20. Let N ≥ 1 and L > 0. Let X be a compact (N,L)-tangle-free surface
of fundamental group Γ. Then, for any point z ∈ X, the set

ΓL
2
(z) :=

{
T ∈ Γ \ {id} : `(γT (z)) <

L

2

}
,



132 CHAPTER 4. LARGE-SCALE GEOMETRY

where γT (z) is the geodesic loop based at z in the homotopy class T , is included in a
subgroup of Γ of rank at most N .

We say a curve γ fills a surface S if all the connected components of S \γ are either
contractible or homeomorphic to cylinders. The tangle-free hypothesis has the following
consequence on the Euler characteristic of the surface filled by a closed geodesic.

Proposition 4.21. There exists a constant C > 0 satisfying the following. For any
N ≥ 1, L > 0 and any compact (N,L)-tangle-free hyperbolic surface X, for any closed
geodesic γ of length ` > 0, the surface S ⊂ X filled by γ satisfies

|χS| ≤ C
`

L

(
`

L
+N

)
.

In particular, for fixed N and L = A log g, A large but fixed, the Euler characteristic
of the surface filled by a closed geodesic of length A log g on a (N,L)-tangle-free surface
is uniformly bounded.

4.3.2 Probabilistic estimate

Let us prove Theorem 4.19, the estimate on the probability for a surface of high genus g
to be (N, log g)-tangle-free. Here is a sketch of the proof, following the classical method
developed by Mirzakhani [Mir13] and used in the proof of Theorem 4.8 for N = 1.

• We use Markov’s inequality to bound the probability of being (N, log g)-tangle-
free by an expectation.

• We write this expectation as a sum of expectations of geometric functions, over all
the different topological configurations for an embedded surface (see Figure 4.10
for N = 2, which is the counter-part of Figure 4.4 for N = 1).

• These expectations can then be computed using Mirzakhani’s integration formula
(Theorem 3.8) and estimated using volume estimates (presented in Section 3.2.3).

Proof. Each topological configurations for an embedded subsurface S of Euler charac-
teristic −N is given by:

• a signature (gS, nS) for S such that 2gS − 2 + nS = N , nS > 0

• a number of components k ∈ {1, . . . , nS} to attach to S

• a partition (Ii)1≤i≤k of the ns components of ∂S

• a genus gi for each component, so that if ni = #Ii, 2gi − 2 + ni > 0, and

k∑
i=1

gi = g − gS − (nS − k) (4.7)

by additivity of the Euler characteristic.
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Figure 4.10: The different topological cases for N = 2. The first line corresponds to the
cases where the signature of S is (0, 4) and the second (1, 2). The cases are organised
from left to right in decreasing number k of components of X \ S.

Let us use Mirzakhani’s integration formula to estimate the term corresponding a cer-
tain configuration (?). By Markov’s inequality,

PWP
g

(
∃S embedded subsurface in config (?) s.t. `T (∂S) < (N + 1) log g

)
≤ EWP

g

[
# embedded subsurfaces in config (?) s.t. `T (∂S) < (N + 1) log g

]
≤ 1

Vg

∫
T?

VgS ,nS(`)
k∏
i=1

Vgi,ni(`Ii) `1 . . . `nS d`1 . . . d`ns .

where

T? =

{
(`1, . . . , `nS) ∈ RnS+ :

nS∑
i=1

`i < (N + 1) log g

}
.

VgS ,nS(`) is a polynomial of degree 3gS − 3 + nS in `2
i , with all coefficients smaller than

VgS ,nS by Lemma 3.12. Therefore, for any gS, nS, ` ∈ T?,

VgS ,nS(`) = O
(
VgS ,nS((N + 1) log g)6gS−6+2nS

)
= ON

(
(log g)6gS−6+2nS

)
where the implied constant is (N + 1)3N max{Vg̃,ñ | 2g̃ − 2 + ñ = N}. We can now use
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equation (3.8) to control the other volumes:∫
T?

k∏
i=1

Vgi,ni(`Ii) `1 . . . `nS d`1 . . . d`nS

≤
k∏
i=1

Vgi,ni

∫
T?

exp

(
1

2

nS∑
i=1

`i

)
d`1 . . . d`ns

= ON

(
(log g)nSg

N+1
2

k∏
i=1

Vgi,ni

)
.

It follows the term corresponding to any given topological configuration (?) is

ON

(
log g3Ng

N+1
2

1

Vg

k∏
i=1

Vgi,ni

)
.

For a fixed N , there are a finite number of possibilities for the parameters (gS, nS), k,
(Ii). Therefore, we simply need to pay attention to the summation over the (gi)i. By
Lemma 3.16,

∑
g1+...+gk

=g−gS−nS+k

k∏
i=1

Vgi,ni = Ons,k
(

Vg−gS−nS+k,nS

(g − gS − nS + k)3(k−1)

)

= ON
(

Vg
g3(k−1)+2(gS+nS−k)−nS

)
= ON

(
Vg

gN+k−1

)
= ON

(
Vg
gN

)
by equations (3.10) and (3.12). This leads to our claim.

4.3.3 Geometry of (N,L)-tangle-free surfaces

Topology of balls Let us prove Theorem 4.20, which generalises Proposition 4.14 to
N > 1 and describes balls of radius L

4
on (N,L)-tangle-free surfaces.

Proof. Let z be a point of X. Let us denote by (γj)0≤j≤J the family of geodesic loops
based at z of length < L

2
, ordered by non-decreasing lengths.

Lemma 4.22. We can construct an increasing family of graphs (Gk)0≤k≤K on the
surface X such that

(A) for all k such that 0 ≤ k ≤ K,

– the edges of Gk are simple geodesic segments or loops, included in ∪jγj, which
do not intersect each other except at their endpoints
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– there exists a regular neighbourhood Rk of Gk on X such that, if R+
k is the

subset of X obtained by adding to Rk all the components homeomorphic to
disks or cylinders in its complement, then χR+

k
= −k and `(∂R+

k ) < (k+1)L.

(B) γ0, . . . , γJ are homotopic with fixed endpoints to loops on the graph GK.

Let us first prove that this construction allows us to conclude.
For any integer k such that 1 ≤ k ≤ K, when we replace the boundary components

of R+
k by the closed geodesics in their free homotopy class, we obtain an embedded

surface Sk of Euler characteristic −k with total boundary length < (k + 1)L. But by
the (N,L)-tangle-free hypothesis, X does not contain any embedded surface of Euler
characteristic −N with total boundary length smaller than (N + 1)L. Hence, K < N .

For any j ∈ {0, . . . , J}, γj is homotopic with fixed endpoints to a loop on the graph
GK ⊂ R+

K , and therefore ΓL
2
(z) can be seen as a subset of the fundamental group of

R+
K . This allows us to conclude, because the Euler characteristic of RK is −K so the

fundamental group of R+
K is generated by K + 1 ≤ N elements.

Let us now prove the lemma.

Construction of the family of graphs. We initiate the construction with the graph G0

with one vertex, z, and one edge, γ0. By minimality, γ0 is simple. Furthermore,
`(γ0) < L/2, so we can pick a regular neighbourhood R0 of G0 such that `(∂R0) < L.
Such a regular neighbourhood is a cylinder of Euler characteristic 0, and with two
boundary components both freely homotopic to γ0, which is not contractible. Therefore,
R+

0 = R0 and (Gk)k=0 satisfies the hypotheses (A) and the hypothesis (B) for j = 0.
Let j ≥ 1. We assume that we have constructed a family (Gk)0≤k≤K satisfying the

hypotheses (A) and (B) for γ0, . . ., γj−1. Let us now take into account the loop γj, by
adding (if necessary) vertices and edges to GK .

Let us first prove that if γj is not simple, then it is already homotopic with fixed
endpoints to a loop on GK , so hypothesis (B) is already valid for γj. Indeed, if we
pick a parametrisation γj : [0, 1] → X and two parameters 0 ≤ t < s < 1 such that
γ(t) = γ(s), then we can write γj = c1βc2, where c1 is the restriction of γj to [0, t], and
c2 its restriction to [s, 1]. We can assume without loss of generality that `(c1) ≤ `(c2)
(by changing the orientation of γj). Then, γj is homotopic to the product of the two
loops c1βc

−1
1 and c1c2.

• We observe that c1c2 is a loop based at z of length < `(γj) (because we removed
the loop β), and therefore there exists i < j such that c1c2 is homotopic to γi,
and hence to a loop on the graph GK .

• Let us replace the loop c1βc
−1
1 by the geodesic loop β̃ in its homotopy class. Since

c1βc
−1
1 is not a geodesic loop (because of the angle 0 at the base-point),

`(β̃) < `(c1βc
−1
1 ) = `(β) + 2`(c1) ≤ `(β) + `(c1) + `(c2) = `(γj)

which implies as before that β̃ (and hence c1βc
−1
1 ) is homotopic to a loop on GK .
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We now assume that γj is simple. Its intersections with the graph GK are transverse,
because otherwise γj would coincide on an interval with a γi for a i < j. It would
therefore contain a sub-loop γi′ of γi based at z, for a i′ ≤ i. This would imply that
γj = γi′ (because γj is simple and therefore only visits z once), which is a contradiction.

We can then write γj = c1 . . . cn where (ci)i are disjoint simple geodesic segments
or loops, which meet GK at their endpoints and only there. By reducing the regular
neighbourhood RK if necessary, we can assume that each ci meets the boundary of RK

exactly twice, at two points si and ei. Let c̃i denote the portion of ci in the complement
of RK , i.e. the restriction of ci to [si, ei].

Let us first consider the segment c = c1. There are several topological configurations
for this segment, represented in Figure 4.11.

(a) c connects on component to itself. (b) c connects two different components.

Figure 4.11: Illustration of the topological situations encountered in the proof of
Lemma 4.22, when adding a segment c to the graph GK .

(a) The exit points s and e of c belong to the same connected component β of ∂RK ,
like in Figure 4.11a. Then, since the portion c̃ of the path c between s and e is
entirely included the complement of RK , the path c̃ is on the same side of β just
after s and just before e. The regular neighbourhood of β and c̃ is therefore a pair
of pants, with three boundary components β′ (freely homotopic to β), β1 and β2

(see Figure 4.11).

– If at least one of β1 or β2 is contractible, then c̃ is homotopic with fixed
endpoints to a path on β. As a consequence, c is homotopic to a path on
GK .

– Otherwise, we define GK+1 by adding the path c and its endpoints to the
graph GK . GK+1 automatically satisfies the first point of (A). For the second
point, we observe that a regular neighbourhood RK+1 of GK+1 can be ob-
tained by gluing the pair of pants P delimited by β, β1 and β2 to the regular
neighbourhood RK along its boundary component β. Neither β1 nor β2 is



4.3. GENERALISATION OF THE TANGLE-FREE HYPOTHESIS 137

contractible, so when we add the disks and cylinders to RK+1 to construct
R+
K+1, we obtain R+

K together with an additional pair of pants (when β1 and
β2 are in two different free homotopy classes) or handle (when β1 and β2 are
freely homotopic to one another, and hence bound a cylinder). In both cases,
by additivity of the Euler characteristic, χR+

K+1
= −(K + 1) since both the

pair of pants and handle have Euler characteristic equal to −1. Furthermore,
the boundary of R+

K+1 is obtained by taking the boundary of R+
K and either

removing the component β and adding β1 and β2 in the pair of pants case,
or just removing β in the handle case. In both cases,

`(∂R+
K+1) ≤ `(∂R+

K)− `(β) + `(β1) + `(β2).

By hypothesis on R+
K , its boundary length is < (K + 1)L. Furthermore,

because the pair of pants delimited by β, β1 and β2 is filled by the family of
curves β and c, of total length < `(β) + L/2, we can assume that

`(∂P ) = `(β) + `(β1) + `(β2) < 2`(β) + L.

As a consequence, `(∂R+
K+1) < (K + 2)L.

(b) Or the exit points s and e belong to two different connected components βe and
βs of ∂RK , like in Figure 4.11b. Then there is once again two possibilities.

– If βe and βs are in the same free homotopy class, then they bound a cylin-
der C. Let us modify the definition of GK and replace it by the graph G′K
obtained by adding the path c and its endpoints to GK . When constructing
R+
K we would initially add the cylinder C to RK . Since c̃ is a simple curve

connecting the two boundary components of C, C \ c̃ is contractible, and
therefore added when constructing the new set (R+

K)′. Hence, the set R+
K

is not modified by the addition of the edge c to GK , and therefore it still
satisfies the hypotheses (A).

– Otherwise, the regular neighbourhood of βe, βs and c is a pair of pants P
of boundary components β′s, β

′
e and β, where β is not contractible. We

add the edge c and its endpoints to GK and obtain a graph GK+1. The
regular neighbourhood RK+1 is then obtained by gluing the pair of pants P
on RK , and R+

K+1 is obtained from R+
K by the same process since β is not

contractible. Hence, the Euler characteristic of R+
K+1 is −(K + 1), and

`(∂R+
K+1) = `(∂R+

K)− `(βs)− `(βe) + `(β)

can be assumed to be < (K + 2)L because P is filled by the family of curves
βs, βe and c of total length < `(βs) + `(βe) + L/2, and therefore we can
assume that

`(∂P ) = `(βs) + `(βe) + `(β) < 2`(βs) + 2`(βe) + L.
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In all these cases, we obtain a new family of graphs (Gk)0≤k≤K′ , with K ′ = K or K+ 1,
satisfying the hoptheses (A) and (B) for γ0, . . . , γj−1, and such that the path c = c1 is
homotopic with fixed endpoints to a path on GK′ .

We apply this construction successively to c = ci for i ∈ {1, . . . , n}. At the end, we
obtain a family of graphs (Gk)0≤k≤K′′ , K ≤ K ′′ ≤ K +n, satisfying the hypotheses (A)
and (B) for the loops γ0, . . . , γj, which concludes this step of the iterative construction.

Surface filled by a long geodesic Proposition 4.21 is an immediate consequence
of the following lemma.

Lemma 4.23. Let N ≥ 1 and L > 0. Let X = H�Γ be a (N,L)-tangle-free hyperbolic
surface. Let γ be a geodesic of length ` on H. Then, there exists a neighbourhood V of
γ in H and a subgroup ΓV of Γ of rank O

(
`
L

(
`
L

+N
))

such that

∀z ∈ V , {T ∈ Γ : T · z ∈ V} ⊂ ΓV .

Figure 4.12: Illustration of the proof of Lemma 4.23.

Proof. Let us cover the geodesic γ by k = O
(
`
L

)
balls of radius L

8
, centered at points

denoted by z1, . . . , zk. Then, the open sets

V =
k⋃
i=1

BL
8
(zi) and U =

k⋃
i=1

BL
4
(zi).

are neighbourhoods of the curve γ – see Figure 4.12.
For each index i ∈ {1, . . . , k}, we set Γi(U) := {T ∈ Γ : T · zi ∈ U}. We claim that

∀z ∈ V , {T ∈ Γ : T · z ∈ V} ⊂
k⋃
i=1

Γi(U).
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Indeed, any element z of V belongs in BL
8
(zi) for an integer i. For an element T ∈ Γ,

if T · z ∈ V , then there is an index j such that T · z ∈ BL
8
(zj). Then,

dH(zj, T · zi) ≤ dH(zj, T · z) + dH(T · z, T · zi) <
L

8
+
L

8
=
L

4

and therefore T · zi ∈ BL
4
(zj) ⊂ U , which implies that T ∈ Γi(U).

Therefore, we only need to prove that for all i ∈ {1, . . . , k}, the set Γi(U) is included
in a subgroup of Γ of rank O

(
`
L

+N
)
, using the (N,L)-tangle-free hypothesis. This

will lead to the conclusion because k = O
(
`
L

)
.

For each j 6= i, let us pick a Ti,j ∈ Γ such that Ti,j · zi ∈ BL
4
(zj), provided such a

transformation exists. Then, if T ∈ Γi(U), T · zi ∈ U so one of the following occurs:

• either T · zi ∈ BL
4
(zi), which implies that T ∈ ΓL

4
(zi) ⊂ ΓL

2
(zi);

• or T · zi ∈ BL
4
(zj) for a j 6= i, and hence

dH(Ti,j · zi, T · zi) ≤ dH(Ti,j · zi, zj) + dH(zj, T · zi) <
L

4
+
L

4
=
L

2

so T−1
i,j T is an element of ΓL

2
(zi).

As a consequence, every element of Γi(U) can be written as a product of the (Ti,j)j 6=i
and the elements of ΓL

2
(zi). The latter is included in a sub-group of Γ of rank ≤ N by

the tangle-free hypothesis and Theorem 4.20, while the former contains k− 1 elements.
Therefore, Γi(U) is included in a sub-group of rank ≤ N + k − 1, which allows us to
conclude.
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Chapter 5

Eigenvalue distribution

In this chapter, we present new results on the spectrum of typical hyperbolic surfaces for
the Weil–Petersson probability setting. We start by introducing our main tool to study
the spectrum of compact hyperbolic surfaces, the Selberg trace formula, in Section 5.1.
The following sections are organised as follows.

• In Section 5.2, we prove an upper bound on the number of small eigenvalues.

• We extend this upper bound to any spectral window in Section 5.3 and prove an
equivalent of counting functions:

N∆
X(a, b)

VolX(X)
∼ 1

4π

∫ +∞

1
4

tanh

(
π

√
λ− 1

4

)
1[a,b](λ) dλ

as soon as b and/or g → +∞, provided the spectral window b−a is not too small.

• These estimates will allow us to improve the deterministic bounds on the mul-
tiplicity of the j-th eigenvalue, and provide an equivalent for the value of λj for
large j, in Section 5.4.

5.1 The Selberg trace formula

Our main tool in the next two chapters is the Selberg trace formula, a generalisation
of the Poisson summation formula to hyperbolic surfaces. It is a summation formula,
linking the values of a test function evaluated at the spectrum of the surface and the
values of the Fourier transform of the test function at the lengths of closed geodesics.
This formula is therefore a very powerful way to relate the geometry and spectrum of
hyperbolic surfaces, though also quite subtle because it relies on good choices of test
functions rather than a one-to-one correspondence of the eigenvalues and lengths.

Some of the (numerous) notable applications of the Selberg trace formula are the
Weyl law [Ber16, Theorem 5.23], Huber’s theorem [Hub59] stating the equivalence of
the length and eigenvalue spectra as geometric quantities [Bus92, Theorem 9.2.9], the

141
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prime number theorem for the length of geodesics [Bus92, Theorem 9.6.1] [Hub59] and
the existence of hyperbolic surfaces with small eigenvalues [Ran74].

Let X = H�Γ be a compact hyperbolic surface, where Γ is a Fuchsian group acting
on the hyperbolic plane H. We pick a fundamental domain D for this action.

Let (λj)j denote the non-decreasing sequence of eigenvalues of X, with multiplicity,
and for any index j let us pick a complex number rj in R∪i

[
−1

2
, 1

2

]
such that λj = 1

4
+r2

j .
Let us introduce a class of test functions.

Definition 6. A function h : C → C is an admissible test function if it satisfies the
following hypotheses:

1. h is even: h(−r) = h(r) for any r ∈ C;

2. h is analytic in the strip
{
r : |=r| ≤ 1

2
+ ε
}

for some ε > 0;

3. for all r in that strip,

h(r) = O
(

1

(1 + |r|2)1+ε

)
. (5.1)

Then, the inverse Fourier transform of h is

ȟ(u) =
1

2π

∫ +∞

−∞
h(r) eiru dr =

1

π

∫ +∞

0

h(r) cos(ru) dr

and we say that (h, ȟ) is an admissible transform pair.

The Selberg trace formula can be stated as follows.

Theorem 5.1 (Selberg trace formula [Sel56]). For any admissible transform pair (h, ȟ),
the following formula holds (with every term well-defined and converging):

+∞∑
j=0

h(rj) =
VolX(X)

4π

∫
R
h(r)r tanh(πr) dr +

∫
D

∑
T∈Γ\{id}

K(z, T · z) d VolH(z) (5.2)

=
VolX(X)

4π

∫
R
h(r)r tanh(πr) dr +

∑
γ

+∞∑
n=1

`(γ)

2 sinh
(
n`(γ)

2

) ȟ(n`(γ)) (5.3)

where:

• K(z, w) = K(dH(z, w)) is the kernel associated to h, which has the following
expression:

K(ρ) = − 1√
2 π

∫ +∞

ρ

ȟ′(u)√
coshu− cosh ρ

du (5.4)

• the final sum is taken over all non-oriented primitive closed geodesics on X, and
`(γ) is the length of the geodesic γ.
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We note that the trace formula has three contributions.
The left-hand side term is a spectral average with density h. In the following, we will

pick h so that it captures the parts of the spectrum we are interested in. For instance,
h can be taken to be a smooth approximation of a step function, so that the spectral
term is close to the number of eigenvalues in a spectral window [a, b].

The first term on the right hand side is called the topological term, because it does
not depend on the metric on X but only on its topology (we recall that the volume of
any hyperbolic surface of genus g is 2π(2g − 2)). If we take a test function h such that
the spectral term is approximately the number of eigenvalues in a segment [a, b], then
it will be close to the spectral density of the hyperbolic plane

µ(a, b) =
1

4π

∫ +∞

1
4

1[a,b](λ) tanh

(
π

√
λ− 1

4

)
dλ.

The last term is a geometric term. Even though both formulations will be useful
for the purpose of this chapter, equation (5.3) is the usual way to write it because the
geometric interpretation of the term is more striking. It is obtained by rearranging the
elements of Γ in equation (5.2) by conjugacy class and computing the integration over
the fundamental domain D.

Understanding the behaviour of the geometric term of the Selberg trace formula is
the main challenge of the next two chapters. By the uncertainty principle, we know that
the more concentrated the test function, the more spread out the Fourier transform.
This means that as we increase the precision of our spectral approximations, the contri-
butions of longer geodesics become significant in the geometric term. We will therefore
apply the large-scale geometry results from Chapter 4, such as Benjamini–Schramm
convergence and the tangle-free hypothesis, in order to bound the geometric term.

5.2 An upper bound at the bottom of the spectrum

Let us first use the Selberg trace formula and Benjamini–Schramm convergence to prove
an upper bound on the number of eigenvalues in a segment of the form [0, b] (this bound
being interesting only whenever b ≤ 1

4
, that is to say for small eigenvalues).

Theorem 5.2. For any large enough g, there exists a subset Ag ⊂Mg such that:

• For any X ∈ Ag and any b ≥ 0,

N∆
X(0, b)

VolX(X)
≤ 32

g−
1
27

( 1
4
−b)

(log g)
3
2

· (5.5)

• 1− PWP
g (Ag) = O

(
g−d
)

for a d ∈
(
0, 1

27

)
.

When taking b = 1
4
, we obtain the following corollary, which improves the (optimal)

deterministic estimate N∆
X

(
0, 1

4

)
≤ 2g − 2 by Otal and Rosas [OR09].
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Corollary 5.3. With high probability, the number of small eigenvalues of a random

hyperbolic surface of genus g is O
(
g(log g)−

3
2

)
= o(g).

Furthermore, this bound becomes better the further b is from the bulk spectrum[
1
4
,+∞

)
. As a consequence, the examples of surfaces with 2g − 2 eigenvalues in [0, ε]

(for arbitrarily small ε) are not typical.

Remark. A similar estimate is proved in [Mon21, Theorem 5], leading to the bound

N∆
X(0, b)

VolX(X)
= O

(
g−2−15( 1

4
−b)

2

(log g)
3
4

)
.

Theorem 5.2 was added to this manuscript because the result we prove here is better
when b = 1

4
, and the proof is more elementary (we use a simpler test function in the

Selberg trace formula).

The proof relies on the following result, a bound on the number N∆
X(0, b) for a given

surface X in terms of geometric quantities only.

Proposition 5.4. Let r ∈ (0, 1], L ≥ 1. There exists a constant C > 0 such that for
any hyperbolic surface X of injectivity radius greater than r,

∀b ≥ 0,
N∆
X(0, b)

VolX(X)
≤ e−( 1

4
−b)t

t
3
2

[√
π

8
+ C

t4et

r4

(
VolX(X−(L))

VolX(X)
+ LeL−

L2

4t

)]
. (5.6)

We recall that for a hyperbolic surface X and a real number L > 0, the set X−(L)
is defined by

X−(L) = {z ∈ X : InjRadX(z) < L}
where InjRadX(z) is the injectivity radius of the surface X at the point z, that is to
say twice the length of the shortest geodesic arc based at z.

In order to prove the result, we will need the following classic lemma, which is a
bound on the number of points in the intersection of the lattice Γ · z and a ball.

Lemma 5.5. Let r > 0 and X = H�Γ be a compact hyperbolic surface of injectivity
radius greater than r. Then, for any z ∈ H and any M > 0,

#{T ∈ Γ : dH(z, T · z) ≤M} ≤
8 exp

(
M + r

2

)
r2

· (5.7)

Proof. By definition of the injectivity radius, the balls BT of center T · z and radius r
2
,

for T ∈ Γ, are disjoint. If T is such that dH(z, T · z) ≤ M , then BT is included in the
ball of center z and radius M + r

2
. Since the volume of a hyperbolic ball of radius R is

2π(cosh(R)− 1), the number of such T is smaller than

cosh
(
M + r

2

)
− 1

cosh
(
r
2

)
− 1

≤
cosh

(
M + r

2

)
1
2
( r

2
)2

≤
8 exp

(
M + r

2

)
r2

·
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We can now proceed to the proof of Proposition 5.4, using the Selberg trace formula.

Proof. We can write X as a quotient H�Γ of the hyperbolic plane H by a Fuchsian
group Γ. Let D be a fundamental domain of this action.

Let (λj)j≥0 be the ordered sequence of eigenvalues of the Laplacian on X with
multiplicities, and for any integer j ≥ 0, let rj be one solution of λj = 1

4
+ r2

j .
For a parameter t ≥ 1, let us apply the Selberg trace formula (Theorem 5.1) to the

even analytic function ht : C→ C defined by

ht : r 7→ exp

(
−t
(

1

4
+ r2

))
.

This can be done because it is a quickly decreasing function: for any r = x + iy such
that |y| ≤ 1,

|ht(r)| = exp

(
−t<

(
1

4
+ r2

))
= exp

(
−t
(

1

4
+ x2 − y2

))
≤ exp

(
2t− t|r|2

)
.

We obtain

+∞∑
j=0

e−tλj =
VolX(X)

4π

∫
R
e−t(

1
4

+r2) tanh(πr)r dr +

∫
D

∑
T∈Γr{id}

Kt(z, T · z) dVolH(z).

(5.8)
Since all terms of the left-hand side of equation (5.8) are positive and decreasing

with respect to λj, one has

N∆
X(0, b) e−tb ≤

+∞∑
j=0

e−tλj .

Therefore,
N∆
X(0, b)

VolX(X)
≤ etb(At +Bt(X)), (5.9)

where

At =
1

4π

∫
R
e−t(

1
4

+r2) tanh(πr)r dr,

Bt(X) =
1

VolX(X)

∫
D

∑
T∈Γr{id}

Kt(z, T · z) dVolH(z).

It is straightforward to estimate At, using the change of variable u = r
√
t, and the

fact that tanh(v) ≤ v for all v ≥ 0:

At =
1

2π

∫ +∞

0

e−t(
1
4

+r2) tanh(πr)r dr ≤ e−
t
4

2 t
3
2

∫ +∞

0

e−u
2

u2 du =

√
π

8

e−
t
4

t
3
2

· (5.10)

To estimate Bt(X), we shall use the following lemma.
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Lemma 5.6. For any t > 0 and ρ > 0,

0 ≤ Kt(ρ) ≤ 2ρ

(2πt)
3
2

(
1 +

t2

ρ2

)
exp

(
− t

4
− ρ2

4t

)
· (5.11)

Proof. We compute the Fourier transform of the Gaussian and obtain:

ȟt(u) =
e−

t
4

2π

∫ +∞

−∞
e−tr

2+iru dr =
e−

t
4
−u

2

4t

2
√
πt
·

Then, by definition of the kernel Kt, equation (5.4),

Kt(ρ) =
e−

t
4

2(2πt)
3
2

∫ +∞

ρ

u exp(−u2

4t
)√

cosh(u)− cosh(ρ)
du.

Let us estimate this integral by cutting it at 2ρ.

• For u ≥ ρ, coshu− cosh ρ ≥ (u− ρ) sinh(ρ) ≥ (u− ρ)ρ so∫ 2ρ

ρ

u exp
(
− u2

4t2

)
√

coshu− cosh ρ
du ≤ 2ρ exp

(
− ρ2

4t2

)∫ 2ρ

ρ

du√
(u− ρ)ρ

= 4ρ exp

(
− ρ2

4t2

)
.

• For u ≥ 2ρ, coshu− cosh ρ ≥ 1
2
(u− ρ)2 ≥ 1

2
ρ2 so

∫ +∞

2ρ

u exp
(
− u2

4t2

)
√

coshu− cosh ρ
du ≤

√
2

ρ

∫ +∞

2ρ

u exp

(
− u

2

4t2

)
du = 2

√
2
t2

ρ
exp

(
−ρ

2

t2

)
.

As a consequence,

Kt(ρ) ≤ e−
t
4

2(2πt)
3
2

(
4ρ+ 2

√
2
t2

ρ

)
exp

(
− ρ2

4t2

)
which leads to the conclusion.

In the rest of the proof, we shall denote f1 = O (f2) if there is a numerical con-
stant C > 0 such that f1 ≤ Cf2.

When we use equation (5.11) in the expression of Bt, we obtain

Bt(X) = O

√t
r2

e−
t
4

VolX(X)

∫
D

∑
T∈Γr{id}

dH(z, T · z) e−
dH(z,T ·z)2

4t dVolH(z)


since the distance between z and T · z is always greater than r, and by hypotheses on
the parameters, 1 + t2

r2 ≤ 2t2

r2 . Let us now regroup the sum over Γ according to the
distance between z and T · z

Bt(X) = O

(√
t

r2

e−
t
4

VolX(X)

∫
D

+∞∑
k=0

ke−
k2

4t nΓ(z, k) dVolH(z)

)
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where for z ∈ D,

nΓ(z, k) = #{T ∈ Γr {id} : k ≤ dH(z, T · z) < k + 1}.

For z ∈ D, let k(z) be the integer part of the injectivity radius of X at the point z.
Whenever k < k(z), nΓ(z, k) = 0, since for all T 6= id, the distance from z to T · z is
greater than k(z). For the other terms, we use Lemma 5.5, that states that for any k,

nΓ(z, k) ≤ 8 ek+1+ r
2

r2
= O

(
ek

r2

)
and therefore

Bt(X) = O

√t
r4

e−
t
4

VolX(X)

∫
D

+∞∑
k=k(z)

kek−
k2

4t dVolH(z)

 . (5.12)

We now cut the integral over the fundamental domain D into two parts, depending on
a positive parameter L:

D−(L) = {z ∈ D : InjRadz(X) ≤ L}
D+(L) = D \D−(L).

The integration over D+(L) corresponds to the places where the integrand is small,
because the integer k(z) is large. Indeed, if z ∈ D+(L),

+∞∑
k=k(z)

kek−
k2

4t ≤
+∞∑
k=bLc

kek−
k2

4t ≤ LeL+1e−
L2

4t

+∞∑
k=0

(k + 2)ek−
k2

4t .

The argument k − k2

4t
of the exponential is always smaller than t, and becomes smaller

than −k as soon as k ≥ 8t. Hence,

+∞∑
k=0

(k + 2)ek−
k2

4t ≤
b8tc∑
k=0

(k + 2)et +
+∞∑

k=b8tc+1

(k + 2)e−k = O
(
t2et
)
.

Whenever z ∈ D+(L), we simply use:

+∞∑
k=k(z)

ek−
k2

4t ≤
+∞∑
k=0

ek−
k2

4t = O
(
t2et
)
.

Then, equation (5.12) implies that

Bt(X) = O
(√

t

r4
e−

t
4

[
VolH(D−(L))

VolX(X)
+

VolH(D+(L))

VolX(X)
LeL−

L2

4t

]
t2et
)
.

This together with equations (5.9) and (5.10) allows us to conclude.
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We can now prove Theorem 5.2.

Proof. For a genus g ≥ 2, let us pick the parameters:

L =
2

9
log g M = g

2
3

t =
1

27
log g r = g−

d
2 for a d ∈

(
0,

1

27

)
.

Then, for large enough g, L ≥ 1, t ≥ 1, r ≤ 1. Let Ag be the set of compact
hyperbolic surfaces of genus g such that:

• InjRad(X) ≥ r = g−
d
2 .

• VolX(X−(L)) ≤MeL = g
8
9 .

Then, by the estimate on the injectivity radius [Mir13, Theorem 4.2] and Theorem 4.1,
the probability of Ag satisfies

1− PWP
g (Ag) = O

(
r2 +

e2L

M

)
= O

(
g−d + g−

2
9

)
= O

(
g−d
)
.

Let X be an element of Ag. It satisfies the hypotheses of Proposition 5.4, and
therefore for any b ≥ 0,

N∆
X(0, b)

VolX(X)
≤ e−( 1

4
−b)t

t
3
2

[√
π

8
+ C

t4et

r4

(
VolX(X−(L))

VolX(X)
+ LeL−

L2

4t

)]
.

We observe that L− L2

4t
= −1

9
log g and therefore

t4et

r4

(
VolX(X−(L))

VolX(X)
+ LeL−

L2

4t

)
= O

(
(log g)5g

1
27

+2d− 1
9

)
= O

(
(log g)5g−2( 1

27
−d)
)

which goes to zero as g → +∞ because d < 1
27

. Since 27
3
2
√
π

8
< 32, we obtain that for

large enough g,

N∆
X(0, b)

VolX(X)
≤ 32

e−( 1
4
−b)t

(log g)
3
2

which is what was claimed.

5.3 Number of eigenvalues in a window

The contents of the following two sections have been adapted from the ar-
ticle ‘Benjamini–Schramm convergence and spectrum of random hyperbolic
surfaces of high genus’ [Mon21], to appear in Analysis & PDE.
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The aim of this section is to describe the behaviour of the number of eigenvalues in
any window [a, b] for a typical surface. This will require a similar geometric assumption
to the one used in Section 5.2, which was stated in Chapter 4 as Corollary 4.2 and we
recall here.

Corollary 5.7 (Geometric assumptions). For large enough g, there exists a subset
Ag ⊂Mg such that, for any hyperbolic surface X ∈ Ag,

InjRad(X) ≥ g−
1
24 (log g)

9
16 (5.13)

VolX
(
{z ∈ X : InjRadz(X) < 1

6
log g}

)
VolX(X)

= O
(
g−

1
3

)
(5.14)

and 1− PWP
g (Ag) = O

(
g−

1
12 (log g)

9
8

)
.

Statement of the results We will prove the two following results, true for the
surfaces in the set Ag.

Theorem 5.8. For any large enough g, any 0 ≤ a ≤ b and any surface X ∈ Ag from
Corollary 5.7,

N∆
X(a, b)

VolX(X)
= O

(
b− a+

√
b+ 1

log g

)
. (5.15)

This theorem provides us with an upper bound on the number of eigenvalues in

an interval [a, b]. In equation (5.15), the term
√

b+1
log g

corresponds to a minimum scale,

below which we can have no additional information by shrinking the spectral window.
The second result is a more precise approximation of the counting functions.

Theorem 5.9. There exists a universal constant C > 0 such that, for any large enough
g, any 0 ≤ a < b and any hyperbolic surface X ∈ Ag from Corollary 5.7, one can write
the counting function N∆

X(a, b) as

N∆
X(a, b)

VolX(X)
=

1

4π

∫ +∞

1
4

1[a,b](λ) tanh

(
π

√
λ− 1

4

)
dλ+ (b− a)R(X, a, b)

where the remainder R(X, a, b) satisfies

− C

Ma,b,g

≤ R(X, a, b) ≤ C

Ma,b,g

√
log(2 +Ma,b,g).

for Ma,b,g = (b− a)
√

log g
b+1

.

The remainder R(X, a, b) is negligible compared to the main term as soon as the

size b− a of the spectral window is much larger than the minimal spacing
√

b+1
log g

, that

is to say Ma,b,g � 1. There are several limits that can be interesting to study.
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• When [a, b] is fixed and g → +∞, our result shows that the spectrum of ∆X

approaches the continuous spectrum of the Laplacian on H. This is the analo-
gous of the fact that, if a sequence of d-regular graphs converges in the sense of
Benjamini–Schramm to the d-regular tree, then their spectral measure converges
to the Kesten-McKay law [Ana17].

• By taking a = 0 and b going to infinity, one can recover a uniform Weyl law, with
remainder of order Og

(√
b log b

)
. The constant is independent of the surface, and

explicit in terms of g. We could probably have obtained a better remainder (for

instance, Og
( √

b
log b

)
as in [Bér77, Ran78]) had we allowed the probability set Ag

to depend on the parameter b, which we did not do here in order to make the
discussion simpler.

• One can also consider mixed regimes, where both b and g go to infinity.

Our approach in proving the two theorems is inspired by [LMS17, Part 9], where

Le Masson and Sahlsten prove the convergence of
N∆
Xg

(a,b)

VolXg (Xg)
to the spectral density of

the hyperbolic plane 1
4π

∫ +∞
1
4

1[a,b](λ) tanh
(
π
√
λ− 1

4

)
dλ as g → +∞, for a uniformly

discrete sequence of compact hyperbolic surfaces (Xg)g converging to H in the sense of
Benjamini–Schramm. Here, we do not consider a sequence but a fixed surface of high
genus. Furthermore, we estimate precisely the error term, which leads us to considering
different kernels in the trace formula.

Organisation of the proof The proof is organised as follows.
The proof of Theorems 5.8 and 5.9 then spans over Section 5.3.1 and 5.3.2, which

corresponds respectively to the case where 0 ≤ a ≤ b ≤ 1 (bottom of the spectrum) and
1
2
≤ a ≤ b (away from small eigenvalues). The way the different parts depend on one

another is explained in Figure 5.1 for clarity. We finish by proving some consequences
on the eigenvalue multiplicity in Section 5.4.

Sections ∗.1.1 to ∗.1.4 Sections ∗.2.1 to ∗.2.4

Theorem 5.8

Section ∗.1.5 Section ∗.2.5

Theorem 5.9

Figure 5.1: The steps of the proofs of Theorems 5.8 and 5.9, and the way they depend
on one another. The symbol ∗ stands for Section 5.3. The left part corresponds to the
case b ≤ 1, and the right part to the case a ≥ 1

2
.
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5.3.1 Proof at the bottom of the spectrum

Let us prove Theorems 5.8 and 5.9 in the case where the spectral window is bounded
from above, more precisely 0 ≤ a ≤ b ≤ 1. The reason why we make the assumption
b ≤ 1 is that our choice of test function behaves poorly for large values of b. The value
1 is arbitrary, and could be replaced by any fixed value larger than 1

2
(because the proof

in the case away from small eigenvalues only works for a ≥ 1
2
).

5.3.1.1 Trace formula, test function and sketch of the proof

The test function Let 0 ≤ a ≤ b ≤ 1. The test function we are going to use in this
section is defined by

ht(r) = ft

(
1

4
+ r2

)
,

where, for λ ≥ 0,

ft(λ) = (1[a,b] ? vt)(λ) =
t√
π

∫ b

a

exp
(
−t2(λ− µ)2

)
dµ.

Here, t > 0 is a parameter that will grow like
√

log g, and vt(x) = t√
π

exp(−t2ρ2) is

the centered normalised Gaussian of variance 1
t
. As a consequence, as we observe on

Figure 5.2, ft is a smooth (point-wise) approximation of the function 1̃[a,b] defined by

1̃[a,b](x) =


1 if x ∈ (a, b)
1
2

if x = a or x = b

0 otherwise.

Figure 5.2: Plot of the test function ft for the parameters a = 0.5 and b = 0.75.
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The trace formula It is clear that ht : C → C is analytic and even. In order to
apply the trace formula, we need to prove an estimate like the one in equation (5.1),
which is the aim of the following lemma.

Lemma 5.10. Let 0 ≤ a ≤ b and t > 0. There exists a constant C = C(a, b, t) > 0
such that

∀x ∈ R,∀y ∈ [−1, 1], |ht(x+ iy)| ≤ C exp(−t2x4 + 2t2(3 + b)x2).

Proof. Let us write

ht(r) =
t√
π

∫ b− 1
4

a− 1
4

exp
(
−t2
(
r2 − µ

)2
)

dµ.

The modulus of the integrand for a r = x+ iy, −1 ≤ y ≤ 1 is∣∣∣exp
(
−t2
(
r2 − µ

)2
)∣∣∣ = exp

(
−t2
(
x4 + y4 + µ2 − 6x2y2 − 2µx2 + 2µy2

))
≤ exp

(
−t2x4 + 6t2x2 + 2t2

(
b− 1

4

)
x2 + 2t2

∣∣∣∣14 − a
∣∣∣∣).

We then integrate this inequality between a− 1
4

and b− 1
4
.

This exponential decay guarantees a polynomial decay in the strip {|=r| ≤ 1} like
the one required in the trace formula. Therefore, one can apply it to ht, and rewrite
equation (5.2) as:

1

VolX(X)

+∞∑
j=0

ft(λj) =
1

4π

∫ +∞

1
4

1[a,b](λ) tanh

(
π

√
λ− 1

4

)
dλ+RI(t, a, b)+RK(X, t, a, b)

(5.16)
where

RI(t, a, b) =
1

4π

∫ +∞

1
4

(ft(λ)− 1[a,b](λ)) tanh

(
π

√
λ− 1

4

)
dλ, (5.17)

RK(X, t, a, b) =
1

VolX(X)

∫
D

∑
γ∈Γ\{id}

Kt(z, γ · z) dVolH(z), (5.18)

Kt is the kernel associated to ht and D is a fundamental domain of X = H�Γ.

Sketch of the proof There are four steps in the proof of Theorems 5.8 and 5.9 at
the bottom of the spectrum.

• Control the integral term RI(t, a, b) (Section 5.3.1.2).
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• Estimate the geometric term RK(X, t, a, b) using the uniform discreteness and the
Benjamini–Schramm convergence assumptions (Section 5.3.1.3).

• Control N∆
X(a, b) with

∑+∞
j=0 ft(λj), and deduce Theorem 5.8 (Section 5.3.1.4).

• Compare more precisely the sum
∑+∞

j=0 ft(λj) to N∆
X(a, b), and conclude (Sec-

tion 5.3.1.5).

5.3.1.2 The integral term

In order to control RI(t, a, b), we need to know more about the speed of convergence
of ft towards 1̃[a,b] as t goes to infinity, which is the aim of the following lemma.

Lemma 5.11. Let 0 ≤ a ≤ b. For any t > 0 and λ ∈ [0,+∞),

|ft(λ)− 1̃[a,b](λ)| ≤


s(t|λ− a|) if λ ∈ [0, a) ∪ {b}
s(t|λ− a|) + s(t|λ− b|) if λ ∈ (a, b)

s(t|λ− b|) if λ ∈ {a} ∪ (b,+∞)

(5.19)

where s : (0,+∞)→ R is the (decreasing) function defined by s(ρ) = e−ρ
2

2
√
πρ

.

Proof. Let us assume that λ ∈ (b,+∞). In that case, 1̃[a,b](λ) = 0, and

|ft(λ)− 1̃[a,b](λ)| = ft(λ) ≤ 1√
π

∫ +∞

t(λ−b)
e−ρ

2

dρ ≤ e−t
2(λ−b)2

2
√
π t(λ− b)

since for ρ > t(λ − b), 1 < 2ρ
2t(λ−b) . All the other cases can be proved in the same way,

using, when λ ∈ [a, b], the fact that the Gaussian we used in the definition of ft is
normalised.

We can now prove the following estimate.

Proposition 5.12. Let 0 ≤ a ≤ b. For any t > 0,

RI(t, a, b) = O
(

1

t

)
.

Proof. Let us replace 1[a,b] by the limit 1̃[a,b] of ft as t → +∞, for they differ on a
set of measure zero. We observe that the right hand side of equation (5.19) blows up
around a and b, while the left hand side remains bounded. We shall therefore cut small
intervals around a and b, and only apply Lemma 5.11 outside them.

Let Cε be the set

Cε =

{
λ ∈

[
1

4
,+∞

)
: |λ− a| < ε or |λ− b| < ε

}
.
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Cε has at most two connected components, each of them of length at most 2ε. Since
|ft − 1̃[a,b]| ≤ 1, ∫

Cε

|ft(λ)− 1̃[a,b](λ)| dλ ≤ 4ε.

There are at most three connected components in
[

1
4
,+∞

)
\ Cε, and the estimate in

every case is the same so we limit ourselves to the study of [b + ε,+∞). Lemma 5.11
implies that∫ +∞

b+ε

|ft(λ)− 1̃[a,b](λ)| dλ = O
(∫ +∞

b+ε

exp(t2(λ− b)2)

t(λ− b)
dλ

)
= O

(
1

εt2

∫ +∞

εt

e−ρ
2

dρ

)
.

Putting the two contributions together, we obtain

RI(t, a, b) = O
(
ε+

1

εt2

∫ +∞

εt

e−ρ
2

dρ

)
,

which leads to our claim if we set ε = 1
t
.

5.3.1.3 The geometric term

Let us now control the geometric term

RK(X, t, a, b) =
1

VolX(X)

∫
D

∑
γ∈Γ\{id}

Kt(z, γ · z) dVolH(z)

for any compact hyperbolic surface X ∈ Ag from Corollary 5.7. In order to do so,
we will estimate the kernel function Kt. We will then regroup the terms in the sum
according to the distance between z and γ · z. This is where we will use the Benjamini–
Schramm hypothesis. Indeed, if z ∈ D has a large injectivity radius, then the decay
of Kt will cause the sum to be small. Otherwise, the sum might not be small, but the
volume of the set of such z will.

Fourier estimate In order to estimate the kernel Kt, we first need to study the
derivative of ȟt, the inverse Fourier transform of the test function ht.

Lemma 5.13. Let 0 ≤ a ≤ b ≤ 1 and r ∈ (0, 3). For any u ≥ r, t ≥ 1
200

,

ȟ′t(u) = O
(
r−

2
3 exp

(
− 7

32
u

4
3 t−

2
3 +

3

16
u

2
3 t

2
3

))
. (5.20)

Proof. By definition of ȟt,

ȟt(u) =
1

2π

∫ +∞

−∞
ht(r)e

iru dr =
t

2π
3
2

∫ +∞

−∞

∫ b

a

e−t
2( 1

4
+r2−µ)

2

eiru dµ dr.
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By the change of variables µ̃ = t
(
µ− 1

4

)
and r̃ =

√
t r and Fubini’s theorem, one can

rewrite this integral as

ȟt(u) =
1

2π
3
2

√
t

∫ t(b− 1
4)

t(a− 1
4)

∫ +∞

−∞
e−(r2−µ)

2

e
i ru√

t dr dµ.

As a consequence, the derivative of ȟt is

ȟ′t(u) =
i

2π
3
2 t

∫ t(b− 1
4)

t(a− 1
4)

F u√
t
(µ) dµ (5.21)

where for u > 0 and µ ∈ R,

Fu(µ) =

∫ +∞

−∞
r e−(r2−µ)

2
+iru dr.

Let us estimate this integral using a change of contour. Let R > 0 and R′ > 0 be two
real parameters. The function z ∈ C 7→ z e−(z2−µ)2+izu is holomorphic, so its contour
integral on the rectangle of vertices R′, R′ + iR, −R′ + iR, −R′ is equal to zero. We
compute the modulus of the integrand for a complex number z = x+ iy:

|z e−(z2−µ)2+izu| =
√
x2 + y2 exp

(
−x4 − y4 + 6x2y2 − µ2 + 2x2µ− 2y2µ− yu

)
. (5.22)

It follows directly from this inequality that the integrals on the vertical sides of the
rectangle go to zero as R′ approaches infinity. As a consequence,

Fu(µ) =

∫
R+iR

z e−(z2−µ)
2
+izu dz.

We use the triangle inequality and equation (5.22) to deduce that

|Fu(µ)| ≤ 2 exp
(
−R4 − µ2 − 2R2µ− uR

) ∫ +∞

0

(x+R) exp
(
−x4 + 6x2R2 + 2x2µ

)
dx.

We now study two distinct cases, depending on the sign of µ.

• If µ ≥ 0, then

|Fu(µ)| ≤ 2 exp
(
8R4 + 4R2µ− uR

) ∫ +∞

0

(x+R) e−(x2−x2
0)2

dx

where x0 =
√

3R2 + µ > 0. We observe that∫ +∞

0

(x+R) e−(x2−x2
0)2

dx ≤
∫ +∞

−x0

(|y|+ x0 +R) e−y
4

e−4y2x0(y+x0)︸ ︷︷ ︸
≤1

dy

= O (1 + x0 +R) ,

and therefore

Fu(µ) = O
(

(1 +R + µ
1
2 ) exp

(
8R4 + 4R2µ− uR

))
.
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• If µ < 0, we do the same with x0 =
√

3R.

|Fu(µ)| ≤ 2 exp
(
−µ2 + 8R4 − 2R2µ− uR

) ∫ +∞

0

(x+R) e−(x2−3R2)2

dx

= O
(
(1 +R) exp

(
−µ2 + 8R4 + 2R2|µ| − uR

))
.

As a conclusion, for any µ ∈ R,

Fu(µ) = O
(

(1 +R + |µ|
1
2 ) exp

(
−µ2
− + 8R4 + 4R2|µ| − uR

))
where µ− = min(µ, 0). We take R = 1

4
u

1
3 and obtain that, for any u > 0 and µ ∈ R

Fu(µ) = O
(

(1 + u
1
3 + |µ|

1
2 ) exp

(
−µ2
− −

7

32
u

4
3 +

1

4
|µ|u

2
3

))
. (5.23)

We then integrate the upper bound (5.23) in equation (5.21).

ȟ′t(u) = O

(
1

t

∫ t(b− 1
4)

t(a− 1
4)
|F u√

t
(µ)| dµ

)

= O

(
1 + u

1
3 t−

1
6 + t

1
2

t
exp

(
− 7

32
u

4
3 t−

2
3

)∫ 3
4
t

− 3
4
t

exp

(
1

4
|µ|u

2
3 t−

1
3

)
dµ

)

because |µ| ≤ 3
4
t for any µ ∈

[
t
(
a− 1

4

)
, t
(
b− 1

4

)]
. Replacing the integral by its value

and using the hypotheses on t, u and r concludes the proof.

Estimate of the kernel function Let us now estimate the kernel function Kt, using
its expression in terms of ȟ′t, equation (5.4).

Lemma 5.14. Let 0 ≤ a ≤ b ≤ 1 and r ∈ (0, 3). For any ρ ≥ r, t ≥ 1
200

,

Kt(ρ) =


O
(

t
r2 exp

(
− ρ

4
3

8t
2
3

))
if ρ ≥ 6t2

O
(

t
r2 exp

(
t2 − ρ

4
3

8t
2
3

))
if ρ ≤ 6t2.

(5.24)

In other words, the kernel Kt decays exponentially as ρ→ +∞, and the exponential
envelope of the kernel spreads as t increases, as can be seen in Figure 5.3.

Proof. By definition of the kernel associated to ht,

Kt(ρ) = − 1√
2π

∫ +∞

ρ

ȟ′t(u)√
coshu− cosh ρ

du.
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Figure 5.3: Plot of the kernel Kt for the parameters a = 0.5 and b = 0.75.

Using equation (5.20), we obtain

Kt(ρ) = O

r− 2
3

∫ +∞

ρ

exp
(
− 7

32
u

4
3 t−

2
3 + 3

16
u

2
3 t

2
3

)
√

coshu− cosh ρ︸ ︷︷ ︸
(?)

du

 . (5.25)

Let us cut this integral into two contributions I1 =
∫ ρcut

ρ
(?) and I2 =

∫ +∞
ρcut

(?) where

ρcut = max(2ρ, 12t2).

This choice of ρcut allows us deal with the cancellation of the denominator in I1 only,
and to be in the asymptotic regime where the decreasing part of the exponential term
is predominant everywhere in I2.

In the second integral, since u ≥ ρcut ≥ 12t2, 3
16
u

2
3 t

2
3 < 2

32
u

4
3 t−

2
3 . Hence, the quantity

in the exponential function is less than − 5
32
u

4
3 t−

2
3 . We deal with the denominator by

observing that coshu−cosh ρ ≥ 1
2
(u−ρ)2 ≥ 1

2
ρ2 since u ≥ ρcut ≥ 2ρ. As a consequence,

I2 = O
(

1

ρ

∫ ∞
ρcut

exp

(
− 5

32
u

4
3 t−

2
3

)
du

)
.

This integral can be controlled by observing that 1 ≤ u
1
3ρ
− 1

3
cut , and then by explicit

integration:

I2 = O

(
t

2
3

ρρ
1
3
cut

exp

(
− 5

32
ρ

4
3
cutt
− 2

3

))
= O

(
t

2
3

r
4
3

exp

(
− 5

16
ρ

4
3 t−

2
3

))
. (5.26)
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Now, in the first integral we use the inequality coshu − cosh ρ ≥ (u − ρ) sinh ρ ≥
(u− ρ)ρ.

I1 ≤
exp
(
− 7

32
ρ

4
3 t−

2
3 + 3

16
ρ

2
3
cutt

2
3

)
√
ρ

∫ ρcut

ρ

du√
u− ρ

=
1

2

√
ρcut − ρ

ρ
exp

(
− 7

32
ρ

4
3 t−

2
3 +

3

16
ρ

2
3
cutt

2
3

)
.

• When ρ ≤ 6t2, ρcut = 12t2 so

I1 = O
(
t

r
1
2

exp

(
− 7

32
ρ

4
3 t−

2
3 + t2

))
. (5.27)

• Otherwise, ρcut = 2ρ so

I1 = O
(

exp

(
− 7

32
ρ

4
3 t−

2
3 +

3

16
2

2
3ρ

2
3 t

2
3

))
= O

(
exp

(
−1

8
ρ

4
3 t−

2
3

))
(5.28)

because the fact that ρ ≥ 6t2 implies that 3
16

2
2
3ρ

2
3 t

2
3 < 3

32
ρ

4
3 t−

2
3 .

Putting together (5.25), (5.26), (5.27) and (5.28) leads to what was claimed.

Kernel summation We can now proceed to the estimate of the geometric term. In
order to do so, we will arrange the terms in the sum depending on the distance between
z and γ · z, as was done in Section 5.2, and use Lemma 5.14.

Lemma 5.15. Let 0 ≤ a ≤ b ≤ 1. Let r ∈ (0, 3) and X be a compact hyperbolic surface
of injectivity radius larger than r. For any t ≥ 1

200
, L ≥ 212t2,

RK(X, t, a, b) = O
(
t3

r4

(
exp(−L) +

VolX(X−(L))

VolX(X)
exp(L)

))
(5.29)

where X−(L) is the set of points in X of injectivity radius smaller than L.

Proof. Let us write a fundamental domain D of X = H�Γ as a disjoint union of D+(L)
and D−(L), respectively the set of points in D of injectivity radius larger and smaller
than L. We cut according to this partition of D the integral in the definition of

RK(X, t, a, b) =
1

VolX(X)

∫
D

∑
γ 6=id

Kt(z, γ · z) dVolH(z)

into two contributions, R+
K(X, t, a, b, L) and R−K(X, t, a, b, L).
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Let us first estimate the term R+
K(X, t, a, b, L). Lemma 5.14 allows us to control

Kt(z, γ · z) in terms of the distance between z and γ · z. In order to use it, we regroup
the terms of the sum according to this quantity:

R+
K(X, t, a, b, L) =

1

VolX(X)

∫
D+(L)

∑
j≥L

∑
γ 6=id

j≤dH(z,γ·z)<j+1

Kt(z, γ · z) dVolH(z).

One should notice that the sum only runs over integers larger than or equal to L as a
consequence of the definition of D+(L). For any z ∈ D+(L), j ≥ L and γ ∈ Γ \ {id}
such that j ≤ dH(z, γ · z) < j + 1, by Lemma 5.14 and since dH(z, γ · z) ≥ L > 6t2,

Kt(z, γ · z) = O

(
t

r2
exp

(
− j

4
3

8t
2
3

))
.

We then apply Lemma 5.5, which proves that

#{γ ∈ Γ : dH(z, γ · z) ≤ j + 1} = O
(
ej

r2

)
.

Therefore, and because VolH(D+(L)) ≤ VolX(X),

R+
K(X, t, a, b, L) = O

(
t

r4
S(t, L)

)
where S(t, L) is defined as the sum

S(t, L) :=
∑
j≥L

exp

(
j − j

4
3

8t
2
3

)
.

The fact that L ≥ 212t2 implies that, for any j ≥ L, j ≤ j
4
3

16t
2
3

. As a consequence,

S(t, L) ≤
∑
j≥L

exp

(
− j

4
3

16t
2
3

)

which can be estimated by comparison with an integral:

S(t, L) ≤

(
1 +

12t
2
3

L
1
3

)
exp

(
− L

4
3

16t
2
3

)
= O (exp(−L)) since L

1
3 ≥ 16t

2
3 .

Therefore,

R+
K(X, t, a, b, L) = O

(
t

r4
exp(−L)

)
. (5.30)
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The same method, applied to R−K(X, t, a, b, L), leads to

R−K(X, t, a, b, L)

= O

(
t

r4

VolX(X−(L))

VolX(X)

∑
j≥0

(1 + 1[0,6t2](j) e
t2) exp

(
j − j

4
3

8t
2
3

))
.

We cut the sum at j
(1)
cut = b6t2c + 1 and j

(2)
cut = b212t2c + 1. The term where j ≥ j

(2)
cut

satisfies the same estimate as before since j
(2)
cut ≥ 212t2, and therefore is

O
(

exp(−j(2)
cut)
)

= O (1) .

We control naively the two other terms, which are O (t2 exp(212t2)). As a consequence,

R−K(X, t, a, b, L) = O
(
t3

r4

VolX(X−(L))

VolX(X)
exp(212t2)

)
. (5.31)

Our claim follows directly from equations (5.30) and (5.31).

Geometric estimate We are now ready to use the geometric properties of random
hyperbolic surfaces, and obtain an estimate of the geometric term in the trace formula
true with high probability.

Proposition 5.16. For any large enough g, any 0 ≤ a ≤ b ≤ 1 and any hyperbolic
surface X ∈ Ag defined in Corollary 5.7, if we set t =

√
log g

64
√

6
, then

RK(X, t, a, b) = O
(

(log g)−
3
4

)
. (5.32)

Proof. It is a direct consequence of Lemma 5.15 and the properties of the elements of
Ag, namely that if X is an element of Ag and L = 1

6
log g = 212t2, then

• the injectivity radius of X is greater than r = g−
1
24 (log g)

9
16 ;

•
VolX(X−(L))

VolX(X)
= O

(
g−

1
3

)
.

Since L ≥ 212t2, r < 3 and t > 1
200

, we can apply Lemma 5.15:

RK(X, t, a, b) = O
(
t3

r4

(
exp(−L) +

VolX(X−(L))

VolX(X)
exp(L)

))
= O

(
(log g)

3
2

g−
1
6 (log g)

9
4

(
g−

1
6 + g−

1
3

+ 1
6

))
.
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5.3.1.4 Proof of Theorem 5.8 at the bottom of the spectrum

When we put together equation (5.16), Proposition 5.12 and 5.16, we obtain directly the
following statement, which is an estimate of the trace formula. Theorems 5.8 and 5.9
(when b ≤ 1) will then follow, since the spectral sum

∑+∞
j=0 ft(λj) approaches N∆

X(a, b)
as t→ +∞.

Corollary 5.17. For any large enough g, any 0 ≤ a ≤ b ≤ 1 and any hyperbolic surface
X ∈ Ag defined in Corollary 5.7, if we set t =

√
log g

64
√

6
, then

1

VolX(X)

+∞∑
j=0

ft(λj) =
1

4π

∫ +∞

1
4

1[a,b](λ) tanh

(
π

√
λ− 1

4

)
dλ+O

(
1√

log g

)
. (5.33)

Proof of Theorem 5.8 when b ≤ 1. Let t =
√

log g

64
√

6
. Let us distinguish two cases.

• Whenever t(b− a) ≥ 1√
3
, since the function ft only takes positive values,

N∆
X(a, b)

VolX(X)
× inf

[a,b]
ft ≤

1

VolX(X)

+∞∑
j=0

ft(λj).

It follows directly from equation (5.33) that the right hand term is

O
(
b− a+

1√
log g

)
.

In order to deal with the infimum, we use Lemma 5.11 that states that

inf
[a,b]

ft ≥
1

2
− e−t

2(b−a)2

2
√
πt(b− a)

≥ 1

2
−
√

3 e−
1
3

2
√
π
≥ 1

10

since we assumed t(b− a) ≥ 1√
3
. Therefore,

(
inf [a,b] ft

)−1
= O (1).

• Otherwise, the fact that a and b are very close together prevents the test function
ft from being a good approximation of the indicator function of [a, b]. We therefore
let a′ be b − 1√

3 t
, so that a′ and b satisfy the spacing hypothesis t(b − a′) ≥ 1√

3
,

and we can apply the first point to them:

N∆
X(a, b)

VolX(X)
≤ N∆

X(a′, b)

VolX(X)
= O

(
b− a′ + 1√

log g

)
= O

(
1√

log g

)
.

The issue with this fix is that, when b is small, a′ takes negative values. However,
throughout this section, the only place where the positivity of a′ was used is at the
end of Lemma 5.13, when saying that |µ| ≤ 3

4
t for any µ ∈

[
t
(
a′ − 1

4

)
, t
(
b− 1

4

)]
.

This remains true as soon as a′ ≥ −1
2
, which will be the case if t is large enough.



162 CHAPTER 5. EIGENVALUE DISTRIBUTION

5.3.1.5 Proof of Theorem 5.9 at the bottom of the spectrum

Let us now proceed to the proof of Theorem 5.9 when b ≤ 1. Beware that, in the proof
of the lower bound, we will need to use Theorem 5.8 for any 0 ≤ a ≤ b. This is not an
issue, as was shown in Figure 5.1.

Proof of the upper bound of Theorem 5.9 when b ≤ 1. Let t =
√

log g

64
√

6
.

If t(b − a) ≤
√

2e, then the integral term is O (b− a) = O
(

1√
log g

)
, so the result

follows directly from Theorem 5.8.
Let us assume t(b − a) ≥

√
2e. The issue in the previous estimate was that the

convergence of ft is slow around a and b, and noticeably ft(a) and ft(b) go to 1
2

and
not 1 as t → +∞. In order to deal with this, we cut a small segment around a and b.
Let 1

t
≤ ε ≤ b−a

2
, then

N∆
X(a, b) = N∆

X(a, a+ ε) + N∆
X(a+ ε, b− ε) + N∆

X(b− ε, b).

By Theorem 5.8,

N∆
X(a, a+ ε) + N∆

X(b− ε, b)
VolX(X)

= O

(
ε+

√
b+ 1

log g

)
= O (ε) .

We use the same method as before to control the middle term:

N∆
X(a+ ε, b− ε)

VolX(X)
× inf

[a+ε,b−ε]
ft ≤

1

VolX(X)

+∞∑
j=0

ft(λj)

≤ 1

4π

∫ +∞

1
4

1[a,b](λ) tanh

(
π

√
λ− 1

4

)
dλ+

C ′√
log g

for a constant C ′ > 0, given by Corollary 5.17. By Lemma 5.11, and because εt ≥ 1,

inf
[a+ε,b−ε]

ft ≥ 1− e−t
2ε2

2
√
πεt
≥ 1

1 + e−ε2t2
·

Putting all the contributions together, there exists a constant C ′′ > 0 such that

N∆
X(a, b)

VolX(X)
≤ 1

4π

∫ +∞

1
4

1[a,b](λ) tanh

(
π

√
λ− 1

4

)
dλ+ C ′′

(
ε+ (b− a) e−t

2ε2
)
.

We can now set

ε =
1

t

√
log

(√
e t(b− a)√

2

)
.

The hypothesis t(b− a) ≥
√

2e directly implies that εt ≥ 1. Furthermore, the fact that
for any x ≥ 1,

√
log x ≤ x√

2e
implies that ε ≤ b−a

2
. A direct substitution of ε and t by

their values in the previous estimate leads to our claim.
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Proof of the lower bound of Theorem 5.9 when b ≤ 1. Let t =
√

log g

64
√

6
. Since 0 ≤ ft ≤ 1,

N∆
X(a, b) ≥

∑
a≤λj≤b

ft(λj) =
+∞∑
j=0

ft(λj)−
∑

0≤λj<a

ft(λj)−
∑
λj>b

ft(λj).

By Corollary 5.17, there exists a C ′ > 0 such that

1

VolX(X)

+∞∑
j=0

ft(λj) ≥
1

4π

∫ +∞

1
4

1[a,b](λ) tanh

(
π

√
λ− 1

4

)
dλ− C ′√

log g
,

so it suffices to prove that the two remaining terms are O
(

VolX(X)√
log g

)
.

Both the terms behave the same way, so we only detail the sum over b. Let us
divide (b,+∞) using a subdivision bk = b+ k

t
, k ≥ 0. We regroup the terms of the sum

according to these numbers.

1

VolX(X)

∑
λj>b

ft(λj) =
+∞∑
k=0

1

VolX(X)

∑
bk<λj≤bk+1

ft(λj)

≤
+∞∑
k=0

N∆
X(bk, bk+1)

VolX(X)
× sup

[bk,bk+1]

ft

= O

(
+∞∑
k=0

(
bk+1 − bk +

√
bk+1 + 1

log g

)
× sup

[bk,bk+1]

ft

)

by Theorem 5.8. As a consequence,

1

VolX(X)

∑
λj>b

ft(λj) = O

(
1√

log g
+

1√
log g

+∞∑
k=1

√
k × sup

[bk,bk+1]

ft

)
.

By Lemma 5.11,

+∞∑
k=1

√
k × sup

[bk,bk+1]

ft = O

(
+∞∑
k=1

exp(−k2)√
k

)
= O (1) .

5.3.2 Proof away from small eigenvalues

We now proceed to the proof of Theorems 5.8 and 5.9 in the case when 1
2
≤ a ≤ b. It is

easy to see that it suffices to prove the results for these two situations, for we can then
apply them to a, 3

4
and 3

4
, b and add up the two contributions if a < 1

2
and b > 1.
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The proof here is very similar to the previous proof, apart from the fact that the
test function we use is different. We will not give all the details, and mostly highlight
the differences between the two proofs.

The reason why we need to assume a ≥ 1
2

is that the test function we use behaves
poorly for small eigenvalues. We will use the fact that there are at most 2g− 2 of them
by work of Otal and Rosas [OR09], and that the spectral window is far enough from
them, to deal with this situation (see Section 5.3.2.4).

5.3.2.1 Trace formula, test function and sketch of the proof

We will use once again the Selberg trace formula, but with a different test function this
time.

The test function Let a = 1
4

+ α2 and b = 1
4

+ β2, for some 0 ≤ α ≤ β. Let us
consider the function

ht(r) = (1[α,β] ? vt)(r) =
t√
π

∫ β

α

exp
(
−t2(r − ρ)2

)
dρ =

1√
π

∫ t(β−r)

t(α−r)
exp
(
−ρ2

)
dρ,

where t still grows like
√

log g. ht now is a smooth approximation of the function 1̃[α,β].
We make ht into an even test function by setting Ht(r) = ht(r) + ht(−r). It is clear
that Ht : C→ C is analytic and even. The following lemma is an estimate on ht aimed
at applying the trace formula, but we make it a bit more precise than necessary for
later use.

Lemma 5.18. Let 0 ≤ α ≤ β, a = 1
4

+ α2 and b = 1
4

+ β2. For any t > 0,

∀r = x+ iy, |ht(r)| ≤
1

2
√
π αt

exp
(
t2(y2 − x2 + 2βx− α2)

)
.

Proof. Let r = x+ iy. The modulus of the integrand in the definition of ht(r) is

|exp
(
−t2(r − ρ)2

)
| = exp

(
−t2(x− ρ)2 + t2y2

)
.

As a consequence,

|ht(r)| ≤
t√
π

exp
(
t2(y2 − x2 + 2βx)

) ∫ +∞

α

exp
(
−t2ρ2

)
dρ

which allows us to conclude, using the Gaussian tail estimate.

Therefore, one can apply the trace formula to Ht:

1

VolX(X)

+∞∑
j=0

Ht(rj) =
1

4π

∫ b

a

tanh

(
π

√
λ− 1

4

)
dλ+RI(t, a, b)+RK(X, t, a, b) (5.34)
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where

RI(t, a, b) =
1

4π

∫ +∞

0

(ht(r) + ht(−r)− 1[α,β](r)) r tanh(πr) dr, (5.35)

RK(X, t, a, b) =
1

VolX(X)

∫
D

∑
γ∈Γ\{id}

Kt(z, γ · z) dVolH(z), (5.36)

Kt is the kernel associated to Ht and D is a fundamental domain of X = H�Γ.

Sketch of the proof The steps of the proof are exactly the same as before, and are
organised the same way. The only additional step is dealing with the contributions of the
small eigenvalues to the sum

∑+∞
j=0(ht(rj)+hr(−rj)), and can be found in Section 5.3.2.4.

This is necessary here and was not before because the function ht is no longer real valued
and small on the imaginary axis. This complication is the reason why this test function
does not work whenever a < 1

2
.

5.3.2.2 The integral term

The integral estimate is the following.

Proposition 5.19. Let 1
4
≤ a ≤ b. For any t ≥ 1

10
,

RI(t, a, b) = O

(√
b

t

)
.

The proof uses the same method as before, and the following lemma to control the
speed of convergence of ht towards 1̃[α,β] as t goes to infinity.

Lemma 5.20. Let 0 ≤ α ≤ β. For any t > 0 and r ∈ R,

|ht(r)− 1̃[α,β](r)| ≤


s(t|r − α|) if r ∈ (−∞, α) ∪ {β}
s(t|r − α|) + s(t|r − β|) if r ∈ (α, β)

s(t|r − β|) if r ∈ {α} ∪ (β,+∞)

(5.37)

where s : (0,+∞)→ R is the (decreasing) function defined in Lemma 5.11.

5.3.2.3 The geometric term

The control of the geometric term is simpler in this case, because the test function Ht

is a convolution of two functions with simple Fourier transforms (a Gaussian and a step
function). Therefore, its Fourier transform has a simple expression.

Lemma 5.21. Let 1
4
≤ a ≤ b and r ∈ (0, 3). For any t ≥ 1

10
, u > r,

ȟ′t(u) = O

(√
b

r
exp

(
− u

2

4t2

))
. (5.38)
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Proof. Let us write a = 1
4

+ α2 and b = 1
4

+ β2, with 0 ≤ α ≤ β.

We can compute ȟt explicitly, knowing the Fourier transform of a Gaussian and a
step function:

ȟt(u) =
β sinc(βu)− α sinc(αu)

π
exp

(
− u

2

4t2

)
where sinc(x) = sinx

x
. Therefore, the derivative of ȟt is

ȟ′t(u) = − u

2t2
ȟt(u) +

β2 sinc′(βu)− α2 sinc′(αu)

π
exp

(
− u

2

4t2

)
.

We use the fact that |sinc(x)| ≤ 1 and |x sinc′(x)| = |cosx−sincx| ≤ 2 to conclude.

This leads directly to an estimate on the kernel function, by cutting the integral (5.4)
expressing Kt in terms of ȟt at 2ρ and using the same inequalities as before for the
denominator.

Lemma 5.22. Let 1
4
≤ a ≤ b and r ∈ (0, 3). For any ρ ≥ r, t ≥ 1

10
,

Kt(ρ) = O

(
t
√
b

r2
exp

(
− ρ2

4t2

))
. (5.39)

Then, the same summation process leads to the following lemma.

Lemma 5.23. Let 1
4
≤ a ≤ b and r ∈ (0, 3). Let X = H�Γ be a compact hyperbolic

surface of injectivity radius larger than r. For any t ≥ 1
10

, L ≥ 8t2,

RK(X, t, a, b) = O

(
t3
√
b

r4

[
exp(−L) +

VolX(X−(L))

VolX(X)
exp(L)

])
(5.40)

where X−(L) is the set of points in X of injectivity radius smaller than L.

We can then conclude using the geometric properties of random surfaces.

Proposition 5.24. For any large enough g, any 1
4
≤ a ≤ b and any hyperbolic surface

X ∈ Ag defined in Corollary 5.7, if we set t =
√

log g

4
√

3
, then

RK(X, t, a, b) = O

(√
b

log g

)
. (5.41)
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5.3.2.4 Small eigenvalues term, and proof of Theorem 5.8 away from them

The behaviour of the function ht is different on the imaginary and real axes. Noticeably,
the function ht is positive on the real axis, but it is not real valued on the imaginary
axis. This will cause some of the inequalities from the previous part to fail. Also,
when a is close to 1

4
, the modulus of ht on the segment

[
− i

2
, i

2

]
becomes too large, and

the remainder we will obtain will be unsatisfactory. This is the reason why this test
function is only suitable for values of a greater than 1

2
.

We shall now deal with the small eigenvalues, so that they do not intervene anymore
afterwards.1

Lemma 5.25. Let 1
2
≤ a ≤ b. For any compact hyperbolic surface X and any t > 0,

1

VolX(X)

∑
rj /∈R

(ht(rj) + ht(−rj)) = O
(

1

t

)
. (5.42)

Proof. Let 1
2
≤ α ≤ β such that a = 1

4
+ α2 and b = 1

4
+ β2. If rj /∈ R, then rj = iyj

with yj ∈
[
−1

2
, 1

2

]
. By Lemma 5.18,

|ht(±rj)| ≤
1

2
√
π αt

exp
(
t2(y2

j − α2)
)

= O
(

1

t

)
since α ≥ 1

2
·

The number of such terms is ≤ 2g − 2 = O (VolX(X)) by [OR09].

When we put together equation (5.34), Proposition 5.19, 5.24 and Lemma 5.25, we
obtain directly the following statement.

Corollary 5.26. For any large enough g, any 1
2
≤ a ≤ b and any hyperbolic surface

X ∈ Ag defined in Corollary 5.7, if we set t =
√

log g

4
√

3
, then

1

VolX(X)

∑
rj∈R

(ht(rj)+ht(−rj)) =
1

4π

∫ b

a

tanh

(
π

√
λ− 1

4

)
dλ+O

(√
b

log g

)
. (5.43)

It is straightforward to deduce Theorem 5.8 from this result as was done before.

5.3.2.5 Proof of Theorem 5.9 away from small eigenvalues

A version of Theorem 5.9 in terms of α and β follows directly from the method of
Section 5.3.1.

Theorem 5.27 (Theorem 5.9 away from small eigenvalues). There exists a universal
constant C > 0 such that, for any large enough g, any 1

2
≤ α ≤ β and any hyperbolic

1Note that we could also have used Theorem 5.2, but this does not lead to a better estimate.
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surface X ∈ Ag from Corollary 5.7, if we set a = 1
4

+ α2 and b = 1
4

+ β2, then one can
write the counting function N∆

X(a, b) as

N∆
X(a, b)

VolX(X)
=

1

4π

∫ b

a

tanh

(
π

√
λ− 1

4

)
dλ+R(X, a, b) (5.44)

where

−C

√
b

log g
≤ R(X, a, b) ≤ C

√
b

log g
log
(

2 + (β − α)
√

log g
) 1

2
.

We translate this statement in terms of a and b thanks to the fact that β−α = b−a
β+α

,

and therefore, as soon as b ≥ 1
2
,

β − α ≤ b− a√
b− 1

4

≤
√

2
b− a√

b
·

5.4 Consequences on the multiplicity of eigenvalues

For a compact hyperbolic surface X ∈ Mg, and a real number λ > 0, let mX(λ)
denote the multiplicity of the eigenvalue λ of ∆X . We can estimate mX(λ) with high
probability, using Theorem 5.8 and 5.2 and a shrinking spectral window around the
eigenvalue λ.

Corollary 5.28. There exists a universal constant C > 0 such that, for any large
enough g, any λ ≥ 0 and any hyperbolic surface X ∈ Ag from Corollary 5.7,

mX(λ)

g
≤ C

√
1 + λ

log g
·

If furthermore λ ≤ 1
4
− ε, then

mX(λ)

g
≤ 41

g−
ε
32

(log g)
3
2

·

Another probabilistic upper bound mX(λ)
g

= Oλ
(

1
log g

)
and mX(λ)

g
= O

(
g−c
√
ε
)

when

λ ≤ 1
4
−ε has been proved recently in [GLMST21]. This was achieved by estimating the

Lp-norms of eigenfunctions on random hyperbolic surfaces of high genus. Though the
behaviour in terms of g of the bound 1

log g
is better than our 1√

log g
, the implied constant

depends on λ.
One can also deduce from Theorem 5.9 an estimate on the j-th eigenvalue λj(X) of

X, in terms of j and g, true with high probability.
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Corollary 5.29. There exists a universal constant C > 0 such that, for any large
enough g, any j ≥ 0 and any hyperbolic surface X ∈ Ag from Corollary 5.7,∣∣∣∣λj(X)− j

g

∣∣∣∣ ≤ C

(
1 +

√
j

g
log

(
2 +

j

g

))
.

There are two interesting regimes in which one can apply this corollary:

• If j ≤ Ag for a A ≥ 1, then λj(X) = O (A).

• If j � g, then λj(X) ∼ j
g

uniformly in X.

As a consequence, the multiplicity of the j-th eigenvalue λj(X) of a typical compact
hyperbolic surface X ∈ Ag satisfies

mX(λj(X))

g
= O

√1 + j
g

log g

 , (5.45)

which is an improvement of the deterministic estimate mX(λj(X)) ≤ 4g + 2j + 1
from [Bes80].

Proof of Corollary 5.29. Let g be large enough for Theorems 5.8 and 5.9 to apply, and
X ∈ Ag. Let j ≥ 0.

If λj(X) ≤ 1
4
, then j ≤ 2g − 2 by work of Otal and Rosas [OR09]. It follows that

both λj(X) and j
g

are O (1), which leads to our claim.

We can therefore assume λj(X) ≥ 1
4
. By Theorem 5.9 applied between 0 and λj(X),

N∆
X(0, λj(X))

2π(2g − 2)

=
1

4π

∫ λj(X)

1
4

1[a,b](λ) tanh

(
π

√
λ− 1

4

)
dλ+O

(√
λj(X) log(2 + λj(X))

)
=
λj(X)

4π
+O

(
1 +

√
λj(X) log(2 + λj(X))

)
.

But by definition of the j-th eigenvalue λj(X), we also have

N∆
X(0, λj(X)) = j +O (mX(λj(X))) ,

which is j + O
(
g
√
λj(X)

)
by Corollary 5.28. As a consequence, there is a constant

C > 0 such that ∣∣∣∣λj(X)− j

g

∣∣∣∣ ≤ C

(
1 +

√
λj(X) log(2 + λj(X))

)
. (5.46)

There exists a constant M > 0 such that, as soon as λj(X) > M , the right hand

term of equation (5.46) is smaller than
λj(X)

2
. We distinguish two cases.
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• If λj(X) > M , then by equation (5.46) and by definition of M , λj(X) ≤ 2 j
g
.

Therefore, equation (5.46) leads to our claim.

• Otherwise, by equation (5.46), j
g

and λj(X) are both OM(1), and the conclusion
still follows.



Chapter 6

Spectral gap

Proving the following conjecture on the spectral gap of typical hyperbolic surfaces of
high genus is the aim of an on-going collaboration with Nalini Anantharaman.

Conjecture 6.1 ([Wri20]). For any ε > 0,

lim
g→+∞

PWP
g

(
λ1 ≥

1

4
− ε
)

= 1. (6.1)

We recall that, by [Che75], this result cannot be true if we replace 1
4

by a larger
number. Mirzakhani proved a first probabilistic lower bound in [Mir13],

∀ε > 0, lim
g→+∞

PWP
g

(
λ1 ≥

1

4

(
log 2

2π + log 2

)2

− ε

)
= 1,

using Cheeger’s inequality. The value of the numerical constant is very small, ≈ 0.002.
A significant step towards Conjecture 6.1 has been achieved very recently by two inde-
pendent teams, Wu–Xue [WX21] and Lipnowski–Wright [LW21].

Theorem 6.2. For any ε > 0,

lim
g→+∞

PWP
g

(
λ1 ≥

3

16
− ε
)

= 1. (6.2)

Note that the situation is the same result in the random cover setting: Magee–
Naud–Puder proved that λ1 ≥ 3

16
− ε typically in [MNP20], and it is conjectured that

this result can be improved to the optimal spectral gap 1
4
.

Conjecture 6.1 is the natural adaptation to hyperbolic surfaces of Friedman’s theo-
rem, conjectured by Alon in [Alo86] and proven by Friedman in [Fri03].

Theorem 6.3. Let d ≥ 3 be an integer. For any ε > 0,

lim
n→+∞

P(d)
n

(
max{|λi| : |λi| < d} ≤ 2

√
d− 1 + ε

)
= 1

for diverse usual probability measures P(d)
n on the set of d-regular graphs with n vertices.
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Let present some ideas and methods that could be used to prove Conjecture 6.1.
We shall compare the approach we suggest to the one used in [WX21, LW21] and the
two proofs of Friedman’s theorem [Fri03, Bor20]. Note that this is a hard problem, and
there is still a lot to be done to reach to a full proof of the statement.

6.1 The trace method

A powerful way to study extremal eigenvalues is the trace method, which we now
present. We first describe the trace method for regular graphs, as used in [McK81,
BS87, Fri91] for instance. This will allow to present some core ideas of the method we
suggest for surfaces, in a simpler setting.

6.1.1 Regular graphs

Let G be a connected, non-bipartite d-regular graphs, with vertices V = {1, . . . , n}.
Let

d = λ1 > λ2 ≥ λ3 ≥ . . . ≥ λn > −d
denote the eigenvalues of the adjacency matrix A of G.

6.1.1.1 Trace formula

The starting point is to observe that, for any integer k, the trace of the matrix Ak can
be written in two different ways. On the one hand, we can diagonalise Ak and express
the trace in terms of its eigenvalues:

Tr(Ak) =
n∑
j=1

λkj .

On the other hand, we can notice that for all i, j, the entry (i, j) of the matrix Ak is
the number of paths of length k from i to j of the graph G, and therefore

Tr(Ak) = #{closed paths of length k on G} =: NG(k).

As a consequence, for any k,

NG(k) =
n∑
j=1

λkj . (6.3)

6.1.1.2 Seeing the spectral gap

The leading term of NG(k) in the limit k → +∞ is always λk1 = dk. The second order
term is linked to the second largest eigenvalues in absolute value, λ+ = max(λ2,−λn).
For any even integer k, all of the terms in equation (6.3) are non-negative and therefore,

NG(k) ≥ dk + λk+.
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In the limit we are interested in, namely n → +∞, this equation is always true for
small k, because dk + λk+ ≤ 2dk and NG(k) is a sum of n� 1 terms. It therefore gives
us no information on the size of λ+.

However, if we now take k = 2bA log nc for a large enough A, then this inequality is
no longer empty. It might then be interesting to see it as a characterisation of the size
of the spectral gap: for a real number α > 0, if λ+ ≥ α, then NG(k)− dk ≥ αk. Hence,

P(d)
n (λ+ ≥ α) ≤ P(d)

n (NG(k)− dk ≥ αk)

for any probability measure P(d)
n on the set of connected non-bipartite d-regular graphs

with n vertices. The advantage of this new form is that we can use Markov’s inequality
and write

P(d)
n (λ+ ≥ α) ≤ E(d)

n

[
NG(k)− dk

αk

]
.

This allows us to reduce the problem of proving that P(d)
n (λ+ ≥ α) → 0 to proving an

estimate of the form

E(d)
n [NG(k)] = dk + o(αk) as n→ +∞, for k = 2bA log nc. (6.4)

This is the idea of the trace method: transforming the difficult problem of estimating
the eigenvalue λ+ into a geometric problem, namely studying the asymptotics of the

average E(d)
n [NG(k)] of the path-counting function.

Unfortunately, it is very difficult to prove a statement such as equation (6.4), and
both proofs of Friedman’s theorem, [Fri03] and [Bor20], use different refinements of the
trace method, some of which we will mention over the course of this section.

6.1.2 Compact hyperbolic surfaces

The trace method for compact hyperbolic surfaces is very similar to the method we have
just described, apart from the fact that we need to replace equation (6.3) by Selberg’s
trace formula [Sel56].

6.1.2.1 Trace formula

We recall that Selberg’s trace formula, as stated in Section 5.1, can be written as:

+∞∑
j=0

χ̂(rj) = (g − 1)

∫
R
χ̂(r) tanh(πr)r dr +

∑
γ primitive
closed geod

+∞∑
n=1

`X(γ)

2 sinh
(
n`X(γ)

2

) χ(n`X(γ))

for any admissible pair (χ̂, χ), where λj = 1
4

+ r2
j . We rewrite this formula as

Sel∆X(χ) = Seltop
g (χ) + Sel`X(χ)

where Sel∆X(χ) is the spectral term, Sel`X(χ) the geometric term and Seltop
g (χ) the topo-

logical term, which does not depend on X.
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6.1.2.2 Test function

A new difficulty is that we need to pick a test function in the trace formula. In order
to simplify the discussion, let us pick a test function χL for a (large) real number L ≥ 1
satisfying the following assumptions1.

Assumption 1. • χ̂L ≥ 0 on R ∪ iR.

• The restriction of χL to R is real-valued and supported on [−L,L].

The real number L will play the role of the integer k in the graph case. Indeed,
since χL(`) = 0 for any ` > L, the geometric term Sel`X(χL) of the trace formula will
only depend on geodesics of length ≤ L.

Let us furthermore assume, for this discussion, the following.

Assumption 2. • χL is strictly positive on the interval (−L,L).

• χL is obtained by dilation: χL(x) = χ(x/L) for all x.

Then, all of the terms present in Selberg’s trace formula are greater or equal to
zero, and the dependency of χL and χ̂L on L are simple. The approaches used in
[WX21, LW21] both use this additional condition, while the new approach that we
present in this thesis cannot, as we will see in Section 6.2.

6.1.2.3 Seeing the spectral gap

Let us study how the spectral gap affects the behaviour of the spectral term of the trace
formula,

Sel∆X(χL) =
+∞∑
j=0

χ̂L(rj).

We prove that, as in the graph case, the leading term of Sel∆X(χL) is χ̂L(r0), and the
next-order term χ̂L(r1). Indeed, if λ = 1

4
+ (iα)2 for a real number α ∈ [0, 1

2
], then by

definition of the Fourier transform

χ̂L(iα) =

∫ L

−L
χL(x) exp(−iα · ix) dx =

∫ L

−L
χL(x) exp(αx) dx. (6.5)

This expression allows us to appreciate the special part played by small eigenvalues in
the trace formula: because small eigenvalues are exactly the eigenvalues such that rj is
purely imaginary, they correspond to a different behaviour of χ̂L(rj).

We can often prove that the quantity χ̂L(iα) is almost of size exp(αL) as L→ +∞.
For instance, thanks to Assumption 2, for any ε > 0,

χ̂L(iα) = L

∫ 1

−1

χ(t) exp(αLt) dt ≥ L

∫ 1

1−ε
χ(t) exp(αLt) dt

1Such a function can be constructed by taking the square convolution f ? f of a positive even
function f with compact support, and dilating the result so that the support is equal to [−L,L].
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and therefore
χ̂L(iα) ≥ Cε L exp((1− ε)αL). (6.6)

Then, the contribution χ̂L(r0) = χ̂L
(
i
2

)
is the leading term of Sel∆X(χL), of size

almost e
L
2 . If λ1 is a small eigenvalue, then χ̂L(r1) is the second-order term, and it will

be smaller the further away λ1 is from zero, i.e., the larger the spectral gap.
More precisely, thanks to Assumption 1 and 2, for any α ∈ (0, 1

2
) and ε ∈ (0, 1),

PWP
g

(
λ1 ≤

1

4
− α2

(1− ε)2

)
≤ PWP

g

(
Sel∆X(χL)− χ̂L

(
i

2

)
≥ CεL exp(αL)

)
and then, by Markov’s inequality, if we manage to prove that

EWP
g

[
Sel∆X(χL)

]
= χ̂L

(
i

2

)
+ o(L exp(αL)) as g → +∞, (6.7)

then we can conclude that

lim
g→+∞

PWP
g

(
λ1 ≤

1

4
− α2

(1− ε)2

)
= 0.

6.1.2.4 The topological term

We can now substitute Sel∆X(χL) by its expression in Selberg’s trace formula, in equa-
tion (6.7). This allows us to reduce the problem to a geometric estimate, proving that:

EWP
g

[
Seltop

g (χL) + Sel`X(χL)
]

= χ̂L

(
i

2

)
+ o(exp(αL)) as g → +∞. (6.8)

Notice that we can take the topological term out of the expectation because it does not
depend on the surface. Its behaves linearly in terms of g:

0 ≤ Seltop
g (χL) ≤ g

∫
R
χ̂L(r)r dr =

g

L

∫
R
χ̂1(u)u du.

In order to prove the estimate (6.7), we need to make sure that this linear term is small
compared to L exp(αL). We therefore add an hypothesis on the size of the parameter L.

Assumption 3. L = A log g for a real number A ≥ 1
α

.

Under this assumption, Seltop
g = o(L exp(αL)) and equation (6.7) is equivalent to

EWP
g

[
Sel`X(χL)

]
= χ̂L

(
i

2

)
+ o(exp(αL)). (6.9)

Assumption 3 appears in the two proofs of the bound λ1 ≥ 3
16
− ε [WX21, LW21]: in

both cases, the authors take L = 4 log g because 3
16

= 1
4
− α2 for α = 1

4
. As we get
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closer to the optimal estimate λ1 ≥ 1
4
− ε, the parameter α becomes very close to zero,

which will require us to let the parameter A take arbitrarily large values.
We recall that L = A log g is a cut-off in the geometric term Sel`X(χL) of Selberg’s

trace formula: only geodesics of length ` ≤ L intervene. As a consequence, proving
Conjecture 6.1 requires to inspect larger and larger scales on typical surfaces.

Now that we have sketched the basic ideas of the trace method and how it can be
used to prove Conjecture 6.1, let us dive into more precise issues that we have identified
and some partial solutions.

6.2 Cancellation of the main term

It is a priori quite difficult to prove an estimate such as

E(d)
n [NG(k)] = dk + o(αk)

or EWP
g

[
Sel`X(χL)

]
= χ̂L

(
i

2

)
+ o(L exp(αL)).

Indeed, it requires to identify a part of E(d)
n [NG(k)] or EWP

g

[
Sel`X(χL)

]
that is precisely

of the right size to correspond to the main term on the r.h.s., and to then prove a
very precise estimate on the rest of the terms. Finding a good way to cancel the trivial
eigenvalues is therefore an important part of the proof of spectral gap results, for graphs
or surfaces.

6.2.1 Methods for graphs

For Friedman’s theorem, the two approaches [Fri03, Bor20] differ greatly.
Friedman uses a notion of Ramanujan functions. A function f is said to be d-

Ramanujan of order α if it satisfies an estimate of the form

f(k) = P (k) dk +O
(
kmαk

)
for a polynomial function P (k) and a constant m. Friedman significantly refined the
trace method, and after numerous very technical manipulations, managed to prove that
all of the terms left to estimate were Ramanujan. We can easily adapt this definition to
hyperbolic surfaces, but it it not very enlightening and it would require many additional
ideas to use it to prove Conjecture 6.1.

Bordenave composed the matrix in the trace by the projector on the orthogonal
of the space of constant vectors, the eigenspace associated to the trivial eigenvalue d.
This causes the main term of the trace to disappear, but it makes the combinatorial
interpretation of the trace as the number of paths significantly more complicated. This
method relies on finite-dimensional linear algebra and combinatorial properties, and we
do not expect to be able to adapt it to hyperbolic surfaces.
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6.2.2 Methods for surfaces: the first-order method

Wu–Xue and Lipnowski–Wright both use a beautiful and strikingly simple argument
to cancel the main term of Selberg’s trace formula in [WX21, LW21]. We shall explain
the argument and the reason why it is difficult to extend it past 3

16
.

The idea is to identify the leading term of the expectation of the geometric term of
the trace formula,

EWP
g

[
Sel`X(χL)

]
= EWP

g

 ∑
γ primitive
closed geod

+∞∑
n=1

`X(γ)

2 sinh
(
n`X(γ)

2

) χL(n`X(γ))

 .
We know that typical surfaces do have short closed geodesics [MP19], and that they
are often simple (at least for L = A log g, A < 1 [MT21]). Inspired by this observation,
we can single out the contribution of Sel`X(χL) corresponding to primitive simple closed
geodesics,

Sel`,p,sX (χL) :=
∑

γ primitive
simple closed geod

`X(γ)χL(`X(γ))

2 sinh
(
`X(γ)

2

) ·
Miraculously, the leading term of EWP

g

[
Sel`,p,sX (χL)

]
as g → +∞ is exactly the main

term of the trace formula, χ̂L
(
i
2

)
.

Proposition 6.4 ([WX21, Proposition 28] or [LW21, Lemma 5.2]).

EWP
g

[
Sel`,p,sX (χL)

]
= χ̂L

(
i

2

)
+O

(
‖χL‖∞

(
1 +

L2 exp
(
L
2

)
g

))
.

The error term in this estimate is of size roughly e
L
2 /g = g

A
2
−1. We recall that the

trace method required to prove estimates with a precision o(exp(αL)) = o(gαA), and
that we already had an error term of size g. As a consequence, we need to assume that:

1 ≤ αA and
A

2
− 1 ≤ αA.

This system of equation has a solution if and only if α ≥ 1
4
. The value α = 1

4
corresponds

to λ = 3
16

and A = 4. In other words, the value 3
16

appears in [WX21, LW21] because
it is the best precision we can obtain by using estimates at the precision 1/g.

Proof. Conveniently, the expectation we need to compute is a sum of geometric func-
tions, and we can apply Mirzakhani’s integration formula (Theorem 3.8) to compute
its expectation.

EWP
g

[
Sel`,p,sX (χL)

]
=

1

Vg

∫ L

0

x2χL(x)

2 sinh
(
x
2

)
Vg−1,2(x, x) +

b g
2
c∑

i=1

Vi,1(x)Vg−i,1(x)

 dx.
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Let us replace the Weil–Petersson volumes that appear in this integration formula
by their first-order approximation. By [MP19, Proposition 3.1] and equations (3.9)
and (3.11)

1

Vg

x2Vg−1,2(x, x) +

b g
2
c∑

i=1

x2Vi,1(x)Vg−i,1(x)

 = 4 sinh2
(x

2

)
+O

(
x2 exp(x)

g

)
.

Then, when we replace these volumes by this estimate, we obtain

EWP
g

[
Sel`,p,sX (χL)

]
=

∫ L

0

2χL(x) sinh
(x

2

)
dx+O

(
‖χL‖∞
g

∫ L

0

x2 exp
(x

2

)
dx

)
.

The first term is almost χ̂L
(
i
2

)
(we just need to replace sinh by cosh, which leads to an

error of size O (‖χL‖∞)).

Limitations of the method If we improve Proposition 6.4 and now estimate every
term at a precision 1/gN rather than 1/g, the second conditions on the parameters α
and A becomes A

2
−N ≤ αA. As a consequence, the best result we can hope to obtain

is λ1 ≥ 1
4
− 1

4(N+1)2 − ε.
We observe that, in order to reach a proof of Conjecture 6.1, we need to work at

arbitrarily high precision. We therefore expect that high-order asymptotic expansions
of the Weil–Petersson volume polynomials, such as the ones presented in Section 3.3,
are absolutely necessary to prove Conjecture 6.1 (in the Weil–Petersson model).

However, the fact that the term of Selberg’s trace formula corresponding to simple
closed geodesics, at the first order, is very close to χ̂L

(
i
2

)
, seems like a very fortunate

coincidence. It is extremely convenient that we were able to find a meaningful contri-
bution of EWP

g

[
Sel`X(χL)

]
which cancels the leading term at the first order. If we try

and push the method to larger orders of precision, we will have to create other similar
cancellations, and it is quite unlikely that they will be as easy to understand, especially
as the level of precision increases.

6.2.3 Methods for surfaces: integration by parts

Let us present a different approach that can be used to cancel the trivial eigenvalue
in the trace formula. The idea is to modify the test function so that χ̂L

(
i
2

)
= 0,

and hope that this modification translates into cancellations in the expectation of the
geometric term of Selberg’s trace formula. The significant advantage of this method is
that it works at arbitrarily high order, which is essential to reach the optimal value 1

4

in Conjecture 6.1.



6.2. CANCELLATION OF THE MAIN TERM 179

6.2.3.1 New test function

We start by taking a function χL satisfying Assumption 1 to 3 as before. We then pick
an integer m ≥ 1, and define a new function ψL,m by:

∀r, ψ̂L,m(r) =

(
1

4
+ r2

)m
χ̂L(r).

As a consequence, ψ̂L,m has a zero of order m at i/2. Thanks to the properties of the
Fourier transform with respect to multiplication and differentiation,

ψL,m = DmχL where D :=
1

4
− ∂2

and ∂ denotes the usual derivative (∂f = f ′).
We notice that the differential operator D precisely cancels the main term of the

trace formula. Indeed, (
1

4
− ∂2

)[
x 7→ exp

(x
2

)]
= 0.

This observation will be a key ingredient of the integration by part argument that we
develop in Section 6.2.3.4.

6.2.3.2 Trace method

The new test function ψL,m is supported on the segment [−L,L] and has a positive
Fourier transform; it satisfies Assumption 1. However,∫ L

−L
ψL,m(x) exp

(x
2

)
dx = ψ̂L,m

(
i

2

)
= 0

and therefore ψL,m is not positive everywhere on [−L,L], and Assumption 2 is never
true in this method.

As a consequence, we need to make a few adjustments to the trace method. We
observe that if λ1 = 1

4
− α2 for a α ∈ [0, 1

2
], by positivity of ψ̂L,m on R,

Sel∆X(ψL,m) ≥ ψ̂L,m(iα) = λm1 χ̂L(iα) ≥ Cε λ
m
1 L exp((1− ε)αL)

by equation (6.6) for the function χL. This bound is quite loose if λ1 is very small,
which is to be expected because of the cancellation we created at λ0. But we already
know that typical surfaces have a spectral gap, so we can write

PWP
g

(
λ1 ≤

1

4
− α2

(1− ε)2

)
= PWP

g

(
0.01 ≤ λ1 ≤

1

4
− α2

(1− ε)2

)
+ PWP

g (λ1 < 0.01)

≤ PWP
g

(
Sel∆X(ψL,m) ≥ Cε,m L exp(αL)

)
+ o(1)

for the constant Cε,m = Cε10−2m, and thanks to Mirzakhani’s bound on λ1 from [Mir13].
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We apply the same method as before, and obtain that if we prove a estimate of the
form

EWP
g

[
Sel`X(ψL,m)

]
= o(L exp(αL)) as g → +∞ (6.10)

for L = A log g, A ≥ 1
α

, then we can deduce that, typically, λ1 ≤ 1
4
− α2

(1−ε)2 . As a
consequence, in this new form of the problem, we no longer need to identify a leading
contribution in the expectation of the trace formula; we ‘simply’ have to prove an upper
bound.

6.2.3.3 A useful lemma

Before we provide some arguments towards a proof of the bound (6.10), we make an
additional simplification. We prove that we can replace the geometric term of Selberg’s
trace formula,

Sel`X(ψL,m) =
∑

γ primitive
closed geod

+∞∑
n=1

`X(γ)ψL,m(n`X(γ))

2 sinh
(
n`X(γ)

2

)
by a regularised version, which does not diverge as the injectivity radius goes to zero:

S̃el
`

X(ψL,m) =
∑

γ primitive
closed geod

+∞∑
n=1

`X(γ)ψL,m(n`X(γ))

2 cosh
(
n`X(γ)

2

) ·

Lemma 6.5. There exists a constant C > 0 such that for any g ≥ 2, L > 0, and for
any admissible pair (χ̂, χ),∣∣∣EWP

g

[
Sel`X(χ)− S̃el

`

X(χ)
]∣∣∣ ≤ C‖χ‖L∞(R) g.

Since ∀x, ∂kχL(x) = 1
Lk
∂kχ

(
x
L

)
and L ≥ 1, there is a constant CM > 0 such that

‖ψL,m‖L∞(R) ≤ CM‖χ‖C2m(R) (6.11)

where ‖χ‖C2m(R) := max{‖∂kχ‖L∞(R), 0 ≤ k ≤ 2m}. As a consequence, thanks to the
hypothesis A ≥ 1/α,∣∣∣EWP

g

[
Sel`X(ψL,m)− S̃el

`

X(ψL,m)
]∣∣∣ = Om

(
‖χ‖C2m(R) g

)
= o(L exp(αL))

and it is equivalent to prove equation (6.10) for Sel or S̃el.

Proof. We observe that

1

2 sinh
(
x
2

) − 1

2 cosh
(
x
2

) =
e−

x
2

sinhx
,
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and therefore the quantity we want to estimate is smaller than

‖χ‖L∞(R) EWP
g

[ ∑
γ primitive
closed geod

∞∑
n=1

`X(γ) e−
`X (γ)

2

sinh(`X(γ))

]
. (6.12)

In order to bound this sum, we shall control the number of terms it contains. We
do so by using the upper bounds [Bus92, Theorem 4.1.6 and Lemma 6.6.4]:

• there are at most 3g − 3 primitive closed geodesics of length ≤ 2 arcsinh 1,

• for any L > 0, the set

GL(X) := {γ closed geodesic : `X(γ) ≤ L} \ {γn : `X(γ) ≤ 2 arcsinh 1 and n ≥ 1}

contains at most (g − 1) eL+6 elements.

We cut the sum (6.12) into two contributions, corresponding to these two cases.

• Let X ∈Mg. For any primitive closed geodesic of length ` = `X(γ) ≤ 2 arcsinh 1,
the sum over its iterates is

+∞∑
n=1

`e−
n`
2

sinh(n`)
≤ `

sinh(`)
+

∫ +∞

1

` dx

sinh(x`)

≤ 1 +
1

`

∫ +∞

`

y dy

sinh(y)
≤ 1 +

C

InjRadX

for a constant C > 0. As a consequence, by [Bus92, Theorem 4.1.6],

EWP
g

[ ∑
γ primitive
closed geod

`X(γ)≤2 arcsinh 1

+∞∑
n=1

`X(γ) e−
`X (γ)

2

sinh(`X(γ))

]
= O

(
EWP
g

[
g +

g

InjRadX

])
= O (g)

because the expectation of 1/ InjRadX is finite by [Mir13, Corollary 4.3].

• Let X ∈Mg. We reorganise the sum depending on the length of the geodesics:

∑
γ primitive
closed geod

`X(γ)>2 arcsinh 1

+∞∑
n=1

`X(γ) e−
`X (γ)

2

sinh(`X(γ))
=

+∞∑
j=1

∑
γ∈Gj+1(X)\Gj(X)

`X(γ) e−
`X (γ)

2

sinh(`X(γ))

≤
+∞∑
j=1

(j + 1) e−
j
2

sinh(j)
#Gj+1(X) ≤ e7(g − 1)

+∞∑
j=1

(j + 1)e
j
2

sinh(j)
= O (g)

and therefore the expectation of this quantity is also O (g).



182 CHAPTER 6. SPECTRAL GAP

6.2.3.4 The integration by parts argument

Let us estimate the expectation of the contribution Sel`,p,sX (ψL,m) of primitive simple
closed geodesics in Sel`X(ψL,m).

Theorem 6.6. Let A > 0. There exists integers m = m(A), M = M(A) and a constant
C = C(A) satisfying the following. For any large enough g, for L := A log g ≥ 1,∣∣∣EWP

g

[
S̃el

`,p,s

X (ψL,m)
]∣∣∣ ≤ C ‖χ‖C2m(R)L

M .

This result is an improvement of Proposition 6.4, which corresponds to approx-
imations at arbitrarily high precision in g, and therefore can be used in a proof of
Conjecture 6.1. Indeed, we can deduce from this statement the following corollary.

Corollary 6.7. For any α ∈ (0, 1
2
), if A := 1

α
, m := m(A) from Theorem 6.6, and

L := A log g, then

EWP
g

[
S̃el

`,p,s

X (ψL,m)
]

= o(L exp(αL)) as g → +∞.

In other words, if we want to prove that λ1 ≥ 1
4
− α2

(1−ε)2 for a α > 0, then it is

always possible to take a large enough m = m(α) so that the estimate (6.10) holds for
the sum of primitive simple closed geodesics.

The proof relies on a integration by parts for the differential operator Dm, and the
fact that

∀k < m, Dm
(
xk exp

(x
2

))
= 0.

Lemma 6.8 (Integration by parts). Let m ≥ 0. There exists a constant Cm > 0 such
that, for any L > 0, any smooth functions f1, f2 : R→ R supported on [−L,L],∣∣∣∣∫ L

0

Dmf1(x)f2(x) dx−
∫ L

0

f1(x)Dmf2(x) dx

∣∣∣∣ ≤ Cm max
0≤µ1,µ2<2m

{|∂µ1f1(0)| · |∂µ2f2(0)|}.

Proof of Lemma 6.8. This is a simple induction, proved by iterating the formula∫ L

0

Df1(x)f2(x) dx−
∫ L

0

f1(x)Df2(x) dx = f ′1(0)f2(0)− f1(0)f ′2(0)

true for any smooth functions f1, f2 supported on [−L,L]. Note we use the fact that
all derivatives of f1 and f2 vanish at L.

Proof of Theorem 6.6. We express the sum S̃el
`,p,s

X (ψL,m) as a sum of geometric func-

tions. By Mirzakhani’s integration formula, the contribution S̃el
`,p,s,0

X of non-separating
simple closed geodesics can be written as

EWP
g

[
S̃el

`,p,s,0

X (ψL,m)
]

=

∫ L

0

ψL,m(x)Fg,0(x) dx (6.13)
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where

Fg,0(x) :=
1

Vg

x2Vg−1,2(x, x)

cosh
(
x
2

) ·

We pick an integer N (to be determined later), and use Theorem 3.18 to find an
approximation of the volume polynomial Vg−1,2(x, x) at the order 1/gN :

x2Vg−1,2(x, x)

Vg
= PN++

g,2 (x, x) ex + PN+−
g,2 (x, x) + PN−+

g,2 (x, x) + PN−−
g,2 (x, x) e−x

+ PN+0
g,2 (x, x) e

x
2 + PN0+

g,2 (x, x) e
x
2 + PN−0

g,2 (x, x) e−
x
2 + P 0−

g,2 (x, x) e−
x
2

+ PN00
g,2 (x, x) +ON

(
x3N+2 exp(x)

gN

)
.

By Theorem 3.18, all of these polynomials are of degree and coefficients smaller than a
constant KN ≥ 3N + 2. Hence,

x2Vg−1,2(x, x)

Vg
= PN++

g,2 (x, x) exp(x) +ON
(
xKN exp

(x
2

)
+
xKN exp(x)

gN

)
.

Since exp(x) = 2 cosh
(
x
2

)
e
x
2 +O (1), we obtain that

Fg,0(x) =

KN∑
k=0

ak(g,N)xk exp
(x

2

)
+ON

(
xKN +

xKN exp
(
x
2

)
gN

)
(6.14)

for a family of numbers (ak(g,N))k such that, ∀k, ak(g,N) = ON (1).

• For any integer k ≤ KN , let us bound the integral∫ L

0

ψL,m(x) ak(g,N) xk exp
(x

2

)
dx = ak(g,N)

∫ L

0

Dmf1(x) f2(x) dx

for f1 := χL and f2 : x 7→ xk exp
(
x
2

)
, using Lemma 6.8. If m ≥ KN + 1, then

Dmf2 is identically equal to 0, and the integration by part yields∣∣∣∣∫ L

0

Dmf1(x) f2(x) dx− 0

∣∣∣∣ ≤ Cm max
0≤µ1,µ2<2m

{|∂µ1χL(0)| · |∂µ2f2(0)|}

We assume that g is large enough so that L ≥ 1, and therefore∫ L

0

ψL,m(x) ak(g,N) xk cosh
(x

2

)
dx = Om,N

(
‖χ‖C2m−1(R)

)
. (6.15)

• We now need to estimate the error term coming from replacing the quantity Fg,0
by its approximation (6.14) in equation (6.13). By the triangle inequality, this
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error is

ON

(
‖ψL,m‖L∞(R)

∫ L

0

(
xKN +

xKN exp
(
x
2

)
gN

)
dx

)

= ON

(
‖χ‖C2m(R)

(
LKN+1 + LKN

exp
(
L
2

)
gN

))
.

We take N = N(A) := bA
2
c+ 1. Then, exp

(
L
2

)
≤ gN , and therefore the error is

ON
(
‖χ‖C2m(R)L

KN+1
)
. (6.16)

Then, by equations (6.15) and (6.16),

EWP
g

[
S̃el

`,p,s,0

X (ψL,m)
]

= Om,N
(
‖χ‖C2m(R)L

KN+1
)

for N = bA
2
c + 1, KN the associated constant from Theorem 3.18, and any integer

m ≥ KN + 1.
The proof is similar for the separating terms. For any 1 ≤ i ≤ bg

2
c, we let

S̃el
`,p,s,i

X (ψL,m) denote the part of S̃el
`,p,s

X (ψL,m) corresponding to simple closed geodesics
cutting the surface into two components of signatures (i, 1) and (g − i, 1). By Mirza-
khani’s integration formula, the expectation of the separating term is

EWP
g

 b g2 c∑
i=1

S̃el
`,p,s,i

X (ψL,m)

 =

b g
2
c∑

i=1

1

Vg

∫ L

0

x2ψL,m(x)Vi,1(x)Vg−1,1(x)

cosh
(
x
2

) dx

=

b g
2
c∑

i=1

Vi,1Vg−i,1
Vg

∫ L

0

ψL,m(x)Fg,i(x) dx.

For each i, we apply Theorem 3.18 to the two volumes in this integral at the order N ,
which allows us to write

Fg,i(x) =

K′N∑
k=0

bg,i,Nk xk exp
(x

2

)
+ON

(
xK
′
N +

x2K′N exp
(
x
2

)
gN

)
,

where all of the coefficients bg,i,Nk are bounded by a constant depending on N only. By
the same integration by parts, as soon as m ≥ K ′N + 1,

∀i ∈
{

1, . . . ,
⌊g

2

⌋}
,

∫ L

0

ψL,m(x)Fg,i(x) dx = ON,m
(
‖χ‖C2m−1LK

′
N+1
)
.

We conclude thanks to the fact that, by equation (3.11),

1

Vg

b g
2
c∑

i=1

Vi,1Vg−i,1 = O (1) .
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As a conclusion, if we take N = bA
2
c + 1, K := max(KN , K

′
N), m := M := K + 1,

then

EWP
g

[
S̃el

`,p,s

X (ψL,m)
]

= OA
(
‖χ‖C2m(R)L

M
)
,

which is what we had to prove.

6.3 Restriction to a set of ‘good’ surfaces

For the sake of simplicity, let us now go back to the ‘simpler’ setting used in [WX21,
LW21], where we study a test function χL satisfying Assumption 1 to 3.

We observed in Section 6.2 that we can easily use Mirzakhani’s integration for-
mula to compute ‘elementary’ terms of the geometric term of Selberg’s trace formula,
Sel`X(χL), such as simple primitive geodesics. However, the situation becomes much
more complicated when we consider general geodesics, and notably geodesics with
many self-intersections, which can be quite wild and numerous in general. This can
be observed in both proofs of the fact that λ1 ≥ 3

16
− ε, [WX21, LW21]: most of the

work consists in dealing with the very large sum over all closed geodesics. We discuss
informally a few ideas that can be used to study more complicated geodesics.

The tangle-free hypothesis Let us make a probabilistic assumption, and restrict
ourselves to a set of ‘good’ surfaces. Inspired by the case of graphs, for a fixed η > 0,
we set

TFg = {X ∈Mg : X is (η log g)-tangle-free},

as done in [LW21]. Then, by Theorem 4.8, PWP
g (TFg) goes to 1 as g → +∞.

The advantage of this hypothesis is that it allows us to describe quite precisely
closed geodesics of length ≤ L = A log g, which appear in the geometric contribution of
the trace formula. Indeed, as we saw in Section 4.2.3, the tangle-free hypothesis implies
that, if we cut a closed geodesic γ in portions of length a log g for small enough a, then
each piece is either simple or an iterated loop. This greatly reduces the possibilities for
the topology of γ. Notably, as proven in Proposition 4.21, the surface filled by γ has
bounded Euler characteristic.

Using a geometric hypothesis in the trace method In order to introduce our
geometric hypothesis, tangle-freeness, in the trace method introduced in Section 6.1.2,
we start by noticing that

PWP
g

(
λ1 ≤

1

4
− α2

(1− ε)2

)
≤ PWP

g

(
λ1 ≤

1

4
− α2

(1− ε)2
and TFg

)
+ PWP

g

(
TFcg

)︸ ︷︷ ︸
o(1)

.
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This allows us reduce the problem to estimating the expectation

(?) := EWP
g

[
S̃el

`

X(χL)1TFg(X)
]

= EWP
g

 ∑
γ primitive
closed geod

+∞∑
n=1

`X(γ)χL(n`X(γ))

2 cosh
(
n`X(γ)

2

) 1TFg(X)

 .
Unfortunately, the presence of this indicator function will make it significantly more
difficult to apply Mirzakhani’s integration formula and estimate the geometric term
Sel`X(χL).

From tangle-free surface to tangle-free curve A trick, inspired from the case
of graphs [Bor20], is to use the tangle-free hypothesis to reduce the number of terms
in the sum over all closed geodesics. More precisely, we prove that if X ∈ TFg, then
every closed geodesic of length ≤ L on X is in a (much smaller) set of ‘tangle-free
configurations’ GTF(L), seen on the base surface Sg.

For instance, by Corollary 4.15, if L = η log g, then all of the geodesics of length
≤ L are simple, and we can take GTF(L) to be the set of all simple closed curves on the
base surface Sg. For L = A log g, GTF(L) could be a set of closed curves filling a surface
of Euler characteristic bounded by a constant CA,η, and that can be cut into ≤ KA,η

pieces so that each piece tangles around at most one closed geodesic.

We can then transform the sum over all closed geodesics of length ≤ L to a smaller
sum, thanks to the indicator function:

(?) = EWP
g

 ∑
γ∈GTF(L)

+∞∑
n=1

`X(γ)χL(n`X(γ))

2 cosh
(
n`X(γ)

2

) 1TFg(X)

 .
Removal of the indicator function When we remove the indicator function, in the
hope to use Mirzakhani’s integration formula, we obtain that

(?) = EWP
g

 ∑
γ∈GTF(L)

+∞∑
n=1

`X(γ)χL(n`X(γ))

2 cosh
(
n`X(γ)

2

)
 − Rg(χL)

where

Rg(χL) := EWP
g

 ∑
γ∈GTF(L)

+∞∑
n=1

`X(γ)χL(n`X(γ))

2 cosh
(
n`X(γ)

2

) 1TFcg(X)

 .
The hope it that this new expression of (?) is much better behaved, because the sum

is taken over a much smaller set of topological configurations, which can be described.
However, in order to reduce the problem to an estimate on this new sum, we need to
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check that the remainder Rg(χL) is small enough. We can prove, using Theorem 4.8
and bounds on the number of closed geodesics ≤ L like in the proof of Lemma 6.5,

|Rg(χL)| ≤ ‖χL‖∞ sup
X∈Mg

 ∑
γ closed geod
`X(γ)≤L

`X(γ)

cosh
(
`X(γ)

2

)
 PWP

g

(
TFcg

)
= O

(
L2e

L
2

g1−η

)
.

As a consequence, if we take L = 4 log g as in the proof of the bound λ1 ≥ 3
16
− ε, then

this error term is O ((log g)2g1+η), i.e. just a bit larger than the topological term of
the trace formula, Seltop

g , which we guaranteed to be small enough. By adjusting the
parameters, we will be able to make this new error term small enough.

However, if we want to reach the value 1
4

and prove Conjecture 6.1, then we need

the probability PWP
g

(
1TFcg

)
to be much smaller in order to cancel out the term e

L
2 . This

is the reason why we introduced the generalised tangle-free hypothesis in Section 4.3.
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Appendix A

Random Bely̆ı surfaces

The bulk of this thesis is entirely focused on one probabilistic model to sample random
surfaces, induced by the Weil–Petersson symplectic structure on the moduli space. In
this appendix, we present another model, discrete and more combinatorial, introduced
by Brooks and Makover [BM04]. We briefly review the literature on the geometry
and spectrum of surfaces sampled this way, and prove new results similar to that of
Section 4.1 and Chapter 5, namely Benjamini-Schramm convergence to the hyperbolic
plane and convergence of the spectral density.

A.1 The probabilistic model and known results

Let us introduce the random construction of compact hyperbolic surfaces developed by
Brooks and Makover [BM04].

The random construction An ideal triangle is a triangle with three vertices at
infinity, or equivalently three angles equal to zero, like the one represented in Figure A.1,
with vertices 0, 1 and ∞. When we glue two of these triangles along an edge there is
one degree of freedom: the distance between their middle points, called the shear.

We can construct a random surface by gluing an even number 2N of ideal triangles
with shear 0. The configuration in which the triangles are glued is described by:

• a random 3-regular graph Γ, picked using the uniform probability measure PGN on
the set G(N) of 3-regular graphs with 2N vertices

• a random orientation ~o of the graph Γ, picked uniformly amongst all of its possible
orientations.

An example of such a gluing is represented in Figure A.1.
The resulting surface is a non-compact surface So(Γ, ~o) of finite area 2πN , which is

typically connected because the underlying graph is [Bol01, Wor81a]. In order to sample
random compact surfaces, we consider the conformal compactification Sc(Γ, ~o) of the
surface So(Γ, ~o). We can prove that with high probability, the surface that we obtain

191
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Figure A.1: On the left, an ideal triangle represented in the Poincaré half-plane with
its center c = 1+i

√
3

2
and the midpoints of its three edges. On the right, an example of

a random gluing of 2N = 8 oriented triangles.

carries a hyperbolic metric, which resembles the metric we would obtain by replacing
neighbourhoods of the cusps of So(Γ, ~o) by hyperbolic disks (see [Bro99] for a detailed
construction of the compactification and [BM04] for the probabilistic result).

Relevance of the model This combinatorial model is discrete, and therefore one
can wonder to what extent random surfaces sampled this way are representative, and
how they are distributed in the set of surfaces.

An answer to this question can be found by observing that the compact Riemann
surfaces obtained by this construction are exactly the Bely̆ı surfaces, that is to say the
surfaces S such that there exists a covering f : S → C unramified outside {0, 1,∞}
[Gam06]. Bely̆ı established in [Bel79] that these surfaces are exactly the Riemann
surfaces which can be defined over some number field. In a sense, this indicates that
the set of Bely̆ı surfaces is ‘dense’ in the set of Riemann surfaces.

Geometric and spectral results The geometry of random Bely̆ı surfaces has first
been studied by Brooks and Makover in [BM04], where rough estimates were obtained
on various quantities. Some of them (the length of the systole, the genus and the
diameter notably) have been described more precisely since then. Table A.1 sums up
the information we have to this day, with references to the different articles.

As a consequence, random Bely̆ı surfaces are quite similar to random Weil–Petersson
surfaces: they are well-connected, with a Cheeger constant bounded away from zero and
a logarithmic diameter. The only difference known so far is the fact that the injectivity
radius is bounded away from zero.

Note that, in most cases (see [BM04] for instance), we prove geometric results on
the non-compact surface So, which then remain true on its compactification Sc thanks
to the results of Brooks [Bro99] comparing the geometry of So and Sc. We will follow
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Quantity bound for a typical Bely̆ı surface

spectral gap λ1 ≥ c1 [BM04]

Cheeger constant h ≥ c2 [BM04]

length of systole `1 ≥ c3, expectation known (≈ 2.4843) [BM04, Pet17]

genus strongly concentrated around N/2 [Gam06]

diameter diam/(logN)→ 2 in probability [BCP19]

short curves Poisson distributed [PT18]

Table A.1: Summary of the geometric and spectral results known of typical Bely̆ı
surfaces. All the constants are independent of N .

this approach in the next section.

A.2 Benjamini-Schramm convergence

Our aim in this section is to prove the following statement.

Theorem A.1. With high probability, a random Bely̆ı surface Sc = Sc(Γ, ~o) satisfies:

VolSc(S
−
c ( 1

32
logN))

VolSc(Sc)
≤ 3N−

1
6 .

The proof is divided into two steps: first, we prove Benjamini-Schramm conver-
gence for the non-compact surfaces So(Γ, ~o) in Section A.2.1, and then we prove that it
implies the result for the compactified surface Sc(Γ, ~o) in Section A.2.2. As in the Weil–
Petersson model, this Benjamini-Schramm convergence result will have consequences
on the spectral density of the Laplacian, which are detailed in Section A.3.

A.2.1 Non-compact surface

Let us first prove that, with high probability, the non-compact surface So(Γ, ~o) converges
to the hyperbolic plane in the sense of Benjamini-Schramm as N approaches infinity.

Proposition A.2. With probability 1− o(N− 1
6 ) as N approaches infinity,

VolSo
({
z ∈ So : InjRad(z) ≤ 1

30
logN

})
VolSo(So)

≤ 3N−
1
6 . (A.1)

Our main argument to prove Proposition A.2 is the fact that, with high probability,
random 3-regular graphs converge in the sense of Benjamini-Schramm to the infinite
3-regular tree. More precisely, we will use the following well-known result, as stated in
[BHY19, Proposition 4.1].
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Lemma A.3. Let κ < 5
24

. For large enough N , if we set KN = bκ log2Nc, then

PGN

(
#{v ∈ V : BKN (v) contains a cycle}

#V
≤ N−

1
6

)
= 1− o(N−

1
6 )

where PGN is the uniform probability measure on the set G(N) of 3-regular graphs with
vertices indexed by {1, . . . , 2N}.

This lemma allows us to distinguish two types of triangles on the triangulation of
a surface So(Γ, ~o), depending on whether the injectivity radius of the corresponding
vertex in Γ is larger than KN or not. Let us prove that a large injectivity radius on the
graph translates into a large injectivity radius on the open surface.

Lemma A.4. Let Γ = (V,E) be a 3-regular graph, and ~o be an orientation of Γ. Let v
be a vertex of Γ with radius of injectivity K ≥ 0. Then, the radius of injectivity of the
center zv of Tv in So(Γ, ~o) is larger than

RK = log

(
cos
(

π
3·2K

)
− sin

(
π

3·2K
)

+ 1

cos
(

π
3·2K

)
+ sin

(
π

3·2K
)
− 1

)
∼K→+∞ K log(2).

(a) Neighbourhood of a point zv for a vertex v of
injectivity radius K = 3 (in the disk model). (b) Construction to compute RK .

Figure A.2: Illustrations for the proof of Lemma A.4.

Proof. Since the ball of radius K in the graph Γ is a tree, the union of the corresponding
triangles is isometric to the set UK represented in Figure A.2 as a subset of the hyper-
bolic disk. Then, the injectivity radius at zv is larger than the distance RK between
the origin and ∂UK .
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Let us compute this distance. By the expression of the hyperbolic distance in the
disk model,

RK = log

(
1 + rK
1− rK

)
where rK is the Euclidean distance between zv and a point PK realising the distance
between zv and ∂UK . Let CK be the center of circle containing PK , and AK one of its
intersection points with the unit disk. Then, the triangle CKzvAK is rectangle because

the two circles are orthogonal. Furthermore, the angle ̂CKzvAK is equal to αK = π
3·2K .

Hence,

rK = zvCK − PKCK = zvCK − AKCK =
1

cos(αK)
− tan(αK) =

1− sin(αK)

cos(αK)

which proves that

RK = log

(
cos
(

π
3·2K

)
+ 1− sin

(
π

3·2K
)

cos
(

π
3·2K

)
− 1 + sin

(
π

3·2K
)) = log

(
2 + o(1)

π
3

2−K + o(2−K)

)
∼ K log(2).

We can now prove Proposition A.2.

Proof. Let us set a κ ∈
(

1
5
, 5

24

)
. By Lemma A.3, with probability 1 − o(N−

1
6 ), the

3-regular graph Γ = (V,E) satisfies the condition

#V −(KN)

#V
≤ N−

1
6 (A.2)

where KN = bκ log2(N)c and V −(KN) = {v ∈ V : InjRadΓ(v) ≤ KN}.
Let ~o be an orientation of Γ, and X = So(Γ, ~o). Let us bound the volume of X−(LN)

for LN = 1
30

logN , by estimating the contribution to each triangle.

VolX(X−(LN))

VolX(X)
=

1

#V

∑
v∈V

VolX(X−(LN) ∩ Tv)
VolX(Tv)

·

We shall cut this sum into two contributions.

• The sum over the vertices v ∈ V −(KN), which is smaller than its number of terms
because the volume ratio is smaller than 1. We use equation (A.2) to bound the

number of terms by N−
1
6 .

• The sum over the vertices v ∈ V +(KN) = V \ V −(KN), for which we will bound
the volume VolX(X−(LN) ∩ Tv) using the fact that

InjRadX(zv) ≥ RKN ≥
1

5
logN (A.3)

for large enough N , because RKN ∼ log(2)bκ log2Nc ∼ κ logN as N → +∞.
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Then,

VolX(X−(LN))

VolX(X)
≤ N−

1
6 +

1

π
max

{
VolX(X−(LN) ∩ Tv) : v ∈ V +(KN)

}
. (A.4)

Let v ∈ V +(KN). We set rN = 1
6

logN . For any z ∈ Tv such that d(z, zv) < rN ,
the ball of center z and radius 1

5
logN − rN is included in the ball of center zv and

radius 1
5

logN , which is isometric to a ball in the hyperbolic plane by equation (A.3).
Therefore, InjRadX(z) is greater than 1

5
logN − rN = LN , and z /∈ X−(LN). Thus,

VolX(X−(LN) ∩ Tv) ≤ VolX(Tv \ BrN (zv)). (A.5)

Figure A.3: A ball of radius r and center c in the ideal triangle T of vertices 0, 1
and ∞. Note that T \ Br(c) has three components; we bound the volume of the top
one by observing it is included in {z : =z ≥ yr}.

Let us estimate the volume of T \Br(c) in the Poincaré half-plane model, where T is

the ideal triangle with vertices 0, 1 and ∞ and c = 1+i
√

3
2

is its center – see Figure A.3.
For large enough r, the set has three isometric connected components. We will bound
the volume of the component corresponding to the vertex∞. This component is entirely
included in the set {z ∈ T : =z ≥ yr}, where iyr is the highest intersection point of
the circle Cr(c) with the geodesic connecting 0 and ∞. Hence,

VolH(T \ Br(c)) ≤ 3

∫ 1

0

∫ +∞

yr

dx dy

y2
=

3

yr
(A.6)

where yr is the largest solution of the equation d(iyr, c) = r. By the formula for the
hyperbolic distance in H [Bus92, equation 1.1.2], this equation can be rewritten as

y2
r −
√

3 cosh(r)yr + 1 = 0.
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Hence,

yr =

√
3

2

(
cosh(r) +

√
cosh2(r)− 4

3

)
∼
√

3

2
er (A.7)

as r approaches infinity.
Finally, by putting together equations (A.4) to (A.6),

VolX(X−(LN))

VolX(X)
≤ N−

1
6 +

3

πyrN
∼

(
1 +

2
√

3

π

)
N−

1
6

by equation (A.7), so it is smaller than 3N−
1
6 for large enough N .

A.2.2 Compactified surface

Let (v1, . . . , vs) denote the family of cusps of a non-compact surface So. Its compact-
ification is constructed by observing that a small enough neighbourhood of a cusp vi
is conformally equivalent to a punctured unit disk. We can “fill in” this puncture by
replacing its neighbourhood by a solid disk. We will identify the center of this new disk
and the puncture vi. As a consequence, setwise, the set So can be obtained by removing
the points (v1, . . . , vs) from the compactified surface Sc – see Figure A.4.

By the uniformisation theorem, there is a unique metric of constant curvature on
Sc. Brooks and Makover proved in [BM04] that with high probability, the genus of
the surface is ≥ 2, and the metric is therefore hyperbolic. The metrics on the surface
So and its compactification Sc have been compared by Brooks in [Bro99], under the
large-cusp assumption.

Definition 7. Let ` > 0. A hyperbolic surface So with n cusps is said to have cusps of
length ≥ ` if there exists a family (hi)1≤i≤n of disjoint closed curves on X such that for
all i ∈ {1, . . . , n}, hi is a horocycle of length ≥ ` around the i-th cusp of X.

(a) A surface with cusps of length ≥ `. (b) Its compactification.

Figure A.4: The two metrics are very close outside the ‘bad’ set, highlighted (in red).
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Brooks and Makover proved that this condition is true with high probability for any
fixed ` > 0. This implies that, outside neighbourhoods of the cusps, the geometry of
the compactified surface is arbitrarily close to that of the non-compact surface [Bro99].
We will only need the two following results.

Lemma A.5. Let ε > 0. There exists positive real numbers ` = `(ε) and r = r(ε) such
that, for any surface So with cusps of length ≥ `, if we define B :=

⋃s
i=1 Br(vi), then

the following holds.

• For any closed geodesic arc β on Sc based at a point z outside of B, there is a
geodesic arc β̃ based at z on So, such that β̃ is homotopic with fixed endpoints to
β on Sc and

`So(β̃) ≤ (1 + ε) `Sc(β).

• For any set A included in the complement of B on Sc,

VolSo(A)

1 + ε
≤ VolSc(A) ≤ (1 + ε) VolSo(A).

We can now prove Theorem A.1.

Proof. Let AN be the event:

• Sc has genus gc ≥ N
3

• So has s ≤ 2 logN cusps and they are of length ≥ `

• So satisfies the property of Proposition A.2:

VolSo(S
−
o ( 1

30
logN))

VolSo(So)
≤ 3N−

1
6 . (A.8)

By the references of Table A.1 together with Proposition A.2,

lim
N→+∞

PGN(AN) = 1.

Let us prove that these conditions imply that

VolSc(S
−
c ( 1

32
logN))

VolSc(Sc)
≤ 3N−

1
6 .

Let ε ∈ (0, 1/15). Let ` = `(ε) and r = r(ε) be the numbers given by Lemma A.5.
For any point z in Sc \B, if z ∈ S−c ( 1

32
logN), then the shortest geodesic arc based

at z, denoted by β, is of length ≤ 1
16

logN . By Lemma A.5, there is loop β̃ such that

β̃ is homotopic to β with fixed endpoints on Sc and β̃ is a geodesic arc on So, of length

`So(β̃) ≤ (1 + ε)`Sc(β) ≤ 1 + ε

16
≤ 1

15
·
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β̃ is not contractible on Sc because it is homotopic to β. It is therefore not contractible
on So either. Hence, z ∈ S−o ( 1

30
logN).

As a consequence,

VolSc(S
−
c ( 1

32
logN))

VolSc(Sc)
≤

VolSc(S
−
o ( 1

30
logN) \B)

VolSc(Sc)
+

VolSc(B)

VolSc(Sc)
·

Let us look at these two contributions separately.

• On the one hand, by Lemma A.5,

VolSc(S
−
o ( 1

30
logN) \B)

VolSc(Sc)
≤

(1 + ε) VolSo(S
−
o ( 1

30
logN))

2π(2gc − 2)

≤ 4N−
1
6 VolSo(So)

5π
(
N
3
− 1
) =

12N
5
6

5(N − 3)

because gc ≥ N
3

and thanks to equation (A.8).

• On the other hand,

VolSc(B)

VolSc(Sc)
≤ s (cosh r − 1)

2π(2gc − 2)
= O

(
logN

N

)
since gc ≥ N

3
and s ≤ 2 logN .

Adding the two estimates, we obtain that the quantity is smaller than 3N−
1
6 for large

enough N , which concludes the proof.

A.3 Consequences on the spectral density

Brooks and Makover proved in [BM04] that typical Bely̆ı surfaces have a uniform spec-
tral gap using Cheeger’s inequality. Now that we furthermore know that these surfaces
converge in the sense of Benjamini-Schramm to the hyperbolic plane, we can provide
additional information on the distribution of the spectrum of these surfaces, using the
results from Chapter 5.

Theorem A.6. There exists a constant C > 0 such that, for any large enough N ,
with high probability, a compact random Bely̆ı surface X constructed with 2N triangles
satisfies the following.

• For any real numbers 0 ≤ a ≤ b,

N∆
X(a, b)

VolX(X)
≤ C

(
b− a+

√
b+ 1

logN

)
(A.9)

and as soon as b ≤ 1
4
,

N∆
X(0, b)

VolX(X)
≤ C

N−
1
28 ( 1

4
−b)

(logN)
3
2

· (A.10)
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• For any real numbers 0 ≤ a ≤ b, we can write

N∆
X(a, b)

VolX(X)
=

1

4π

∫ +∞

1
4

1[a,b](λ) tanh

(
π

√
λ− 1

4

)
dλ+ (b− a)RX(a, b)

where the remainder RX(a, b) satisfies

− C

Ma,b,N

≤ RX(a, b) ≤ C

Ma,b,N

√
log(2 +Ma,b,N) (A.11)

where Ma,b,N = (b− a)
√

logN
b+1

.

The results of Theorem A.6 have been stated in terms of N because we are set in
the regime N → +∞, but they can be translated in terms of the genus g because g
is typically concentrated around the value N

2
[Gam06]. As a consequence, the spectral

density of typical Bely̆ı surfaces and typical Weil–Petersson surfaces are quantitatively
similar to the best of our current knowledge.

Proof. We know that with high probability, the surface X satisfies:

• InjRadX ≥ C for a certain constant C > 0.

• VolX(X−( 1
32

logN))

VolX(X)
≤ 4N−

1
6 .

Let us prove the claimed estimates on this set of high probability.
We first obtain the upper bound for small eigenvalues thanks to the results from

Section 5.1, and more precisely the deterministic estimate Proposition 5.4. Let us set
L = 1

32
logN , r = min(C, 1) and t = 1

28 logN . Then, for any b ≥ 0,

N∆
X(0, b)

VolX(X)
≤ e−( 1

4
−b)t

t
3
2

[√
π

8
+ C

t4et

r4

(
VolX(X−(L))

VolX(X)
+ LeL−

L2

4t

)]
= ~o

(
N−

1
28 ( 1

4
−b)

(logN)
3
2

(
1 + (logN)4N

1
28

(
N−

1
6 + (logN)N−

1
32

)
︸ ︷︷ ︸

o(1)

))

which our claim.
Then, the other two estimates follow straightforwardly from the method detailed

in Section 5.3. The key argument is that the geometric assumptions allow us to
bound the geometric term of the Selberg trace formula using the deterministic esti-
mates Lemma 5.15 and 5.23 with the length parameter L = 1

32
logN , which will cause

the parameter t to be (at most) proportional to
√

logN .
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[NN98] Marjatta Näätänen and Toshihiro Nakanishi. Weil–Petersson areas of the
moduli spaces of tori. Results in Mathematics, 33(1-2):120–133, 1998. 67,
119

[NWX20] Xin Nie, Yunhui Wu, and Yuhao Xue. Large genus asymptotics for lengths
of separating closed geodesics on random surfaces. arXiv:2009.07538, 2020.
23, 42

[OR09] Jean-Pierre Otal and Eulalio Rosas. Pour toute surface hyperbolique de
genre g, λ2g−2 > 1/4. Duke Mathematical Journal, 150(1):101–115, 2009.
17, 25, 35, 43, 143, 164, 167, 169

[Par05] Hugo Parlier. Lengths of geodesics on Riemann surfaces with boundary.
Annales Academiæ Scientiarum Fennicæ . Mathematica, 30(2):227–236,
2005. 129



BIBLIOGRAPHY 207

[Par14] Hugo Parlier. A short note on short pants. Canadian Mathematical Bul-
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